首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FINITE ELEMENT METHODS FOR SOBOLEV EQUATIONS   总被引:5,自引:0,他引:5  
A new high-order time-stepping finite element method based upon the high-order numerical integration formula is formulated for Sobolev equations, whose computations consist of an iteration procedure coupled with a system of two elliptic equations. The optimal and superconvergence error estimates for this new method are derived both in space and in time. Also, a class of new error estimates of convergence and superconvergence for the time-continuous finite element method is demonstrated in which there are no time derivatives of the exact solution involved, such that these estimates can be bounded by the norms of the known data. Moreover, some useful a-posteriori error estimators are given on the basis of the superconvergence estimates.  相似文献   

2.
In this note we propose a nonstandard technique for constructing global a posteriori error estimates for the stationary convection–reaction–diffusion equation. In order to estimate the approximation error in appropriate weighted energy norms, which measures the overall quality of the approximations, the underlying bilinear form is decomposed into several terms which can be directly computed or easily estimated from above using elementary tools of functional analysis. Several auxiliary parameters are introduced to construct such a splitting and tune the resulting upper error bound. It is demonstrated how these parameters can be chosen in some natural and convenient way for computations so that the weighted energy norm of the error is almost recovered, which shows that the estimates proposed are, in fact, quasi-sharp. The presented methodology is completely independent of numerical techniques used to compute approximate solutions. In particular, it is applicable to approximations which fail to satisfy the Galerkin orthogonality, e.g., due to an inconsistent stabilization, flux limiting, low-order quadrature rules, round-off and iteration errors etc. Moreover, the only constant that appears in the proposed error estimates is of global nature and comes from the Friedrichs–Poincaré inequality.  相似文献   

3.
A fully computable upper bound for the finite element approximation error of Allen–Cahn and Cahn–Hilliard equations with logarithmic potentials is derived. Numerical experiments show that for the sharp interface limit this bound is robust past topological changes. Modifications of the abstract results to derive quasi-optimal error estimates in different norms for lowest order finite element methods are discussed and lead to weaker conditions on the residuals under which the conditional error estimates hold.  相似文献   

4.
With weighted orthogonal Jacobi polynomials, we study spectral approximations for singular perturbation problems on an interval. The singular parameters of the model are included in the basis functions, and then its stiff matrix is diagonal. Considering the estimations for weighted orthogonal coefficients, a special technique is proposed to investigate the a posteriori error estimates. In view of the difficulty of a posteriori error estimates for spectral approximations, we employ a truncation projection to study lower bounds for the models. Specially, we present the lower bounds of a posteriori error estimates with two different weighted norms in details.  相似文献   

5.
Reliable and efficient residual-based a posteriori error estimates are established for the stabilised locking-free finite element methods for the Reissner-Mindlin plate model. The error is estimated by a computable error estimator from above and below up to multiplicative constants that do neither depend on the mesh-size nor on the plate's thickness and are uniform for a wide range of stabilisation parameter. The error is controlled in norms that are known to converge to zero in a quasi-optimal way. An adaptive algorithm is suggested and run for improving the convergence rates in three numerical examples for thicknesses 0.1, .001 and .001.  相似文献   

6.
We study quasilinear equations of elliptic and parabolic type whose solutions, having bounded uniform norms or bounded uniform norms of their derivatives, are uniquely defined by the additional information about the values of these solutions on a grid. For the case in which the equations and grid values are given with an error, we present estimates of the error of approximate solutions in the uniform metric.  相似文献   

7.
We derive new a priori error estimates for linear parabolic equations with discontinuous coefficients. Due to low global regularity of the solutions the error analysis of the standard finite element method for parabolic problems is difficult to adopt for parabolic interface problems. A finite element procedure is, therefore, proposed and analyzed in this paper. We are able to show that the standard energy technique of finite element method for non-interface parabolic problems can be extended to parabolic interface problems if we allow interface triangles to be curved triangles. Optimal pointwise-in-time error estimates in the L 2(Ω) and H 1(Ω) norms are shown to hold for the semidiscrete scheme. A fully discrete scheme based on backward Euler method is analyzed and pointwise-in-time error estimates are derived. The interfaces are assumed to be arbitrary shape but smooth for our purpose.  相似文献   

8.
Summary The Robin problem for a nonlinear, second-order, elliptic equation is approximated by a primal hybrid method. Optimal order error estimates are established in various norms, with minimal regularity requirements in almost all cases.  相似文献   

9.
Inequalities between some norms of rectangular matrices and the corresponding relationships between condition numbers are established and clearly arranged in two simple diagrams. Furthermore, some well-known error estimates for linear equations in the nonsingular case are shown to be valid for all submultiplicative matrix norms. The new proofs work without using infinite series.  相似文献   

10.
In this paper we provide key estimates used in the stability and error analysis of discontinuous Galerkin finite element methods (DGFEMs) on domains with curved boundaries. In particular, we review trace estimates, inverse estimates, discrete Poincaré–Friedrichs' inequalities, and optimal interpolation estimates in noninteger Hilbert–Sobolev norms, that are well known in the case of polytopal domains. We also prove curvature bounds for curved simplices, which does not seem to be present in the existing literature, even in the polytopal setting, since polytopal domains have piecewise zero curvature. We demonstrate the value of these estimates, by analyzing the IPDG method for the Poisson problem, introduced by Douglas and Dupont, and by analyzing a variant of the hp-DGFEM for the biharmonic problem introduced by Mozolevski and Süli. In both cases we prove stability estimates and optimal a priori error estimates. Numerical results are provided, validating the proven error estimates.  相似文献   

11.
讨论了带弱奇异核的非线性抛物积分微分方程的Hermite型各向异性矩形元逼近.在各向异性网格下导出了关于Riesz投影的L~2和H~1模的误差估计.在半离散和向后欧拉全离散格式下,基于Riesz投影的性质并利用平均值技巧,分别得到了L~2模意义下的最优误差估计.  相似文献   

12.
奇异非线性抛物方程的时空有限元方法   总被引:1,自引:0,他引:1  
时空有限元的思想早期出现在Oden和Nickell&Sackman等人的论文中,它通过统一时空变量,克服了一般有限元方法对时间作差分离散时引起的时间上的低精度,得到了一种解决时间依赖问题的有效方法.之后,在其基础上又发展起来了流线扩散法和特征流线扩散法.Gurtin于1964年提出了一种变分原理,为人们构造时空有限元提供了一个新的途径.1973年Reed和Hill提出间断Galerkin有限元方法.  相似文献   

13.
An inverse boundary value problem for a nonlinear parabolic equation is considered. Two-sided estimates for the norms of values of a nonlinear operator in terms of those of a corresponding linear operator are obtained.On this basis, two-sided estimates for the modulus of continuity of a nonlinear inverse problem in terms of that of a corresponding linear problem are obtained. A method of auxiliary boundary conditions is used to construct stable approximate solutions to the nonlinear inverse problem. An accurate (to an order) error estimate for the method of auxiliary boundary conditions is obtained on a uniform regularization class.  相似文献   

14.
1引言在生物学、统计学、控制论及航天技术等领域的研究中,经常出现由时间延滞偏微分方程所刻划的数学模型.目前仅有[1]等对这类方程在解的性质方面作过研究.本文考虑最简单的中立型时间延滞抛物方程初边值问题的有限元方法,其中 为常数, 为正常数, 为R中具有光滑边界 的有界区域. 当 时,(1.1)就是通常的抛物方程初边值问题.讨论(1.1)有限元逼近的难点在于函数 对时间导数一般不存在,且t时刻函数u(x,t)总与t-时刻函数u(x,t-r)有关.为克服这一困难,我们将时间以r为单位进行剖分,在一定条件下…  相似文献   

15.
Summary Part I of this work deals with the forward error analysis of Gaussian elimination for general linear algebraic systems. The error analysis is based on a linearization method which determines first order approximations of the absolute errors exactly. Superposition and cancellation of error effects, structure and sparsity of the coefficient matrices are completely taken into account by this method. The most important results of the paper are new condition numbers and associated optimal component-wise error and residual estimates for the solutions of linear algebraic systems under data perturbations and perturbations by rounding erros in the arithmetic floating-point operations. The estimates do not use vector or matrix norms. The relative data and rounding condition numbers as well as the associated backward and residual stability constants are scaling-invariant. The condition numbers can be computed approximately from the input data, the intermediate results, and the solution of the linear system. Numerical examples show that by these means realistic bounds of the errors and the residuals of approximate solutions can be obtained. Using the forward error analysis, also typical results of backward error analysis are deduced. Stability theorems and a priori error estimates for special classes of linear systems are proved in Part II of this work.  相似文献   

16.
This paper is devoted to the establishment of sharper $a$ $priori$stability and error estimates of a stabilized finite element method proposed by Barrenechea and Valentin for solving the generalized Stokes problem, which involves a viscosity $\nu$ and a reaction constant $\sigma$. With the establishment of sharper stability estimates and the help of $ad$ $hoc$finite element projections, we can explicitly establish the dependence of error bounds of velocity and pressure on the viscosity $\nu$, the reaction constant $\sigma$, and the mesh size $h$. Our analysis reveals that the viscosity $\nu$ and the reaction constant $\sigma$ respectively act in the numerator position and the denominator position in the error estimates of velocity and pressure in standard norms without any weights. Consequently, the stabilization method is indeed suitable for the generalized Stokes problem with a small viscosity $\nu$ and a large reaction constant $\sigma$. The sharper error estimates agree very well with the numerical results.  相似文献   

17.
We present a mixed method for a three-dimensional axisymmetric div-curl system reduced to a two-dimensional computational domain via cylindrical coordinates. We show that when the meridian axisymmetric Maxwell problem is approximated by a mixed method using the lowest order elements (for the vector variable) and linear elements (for the Lagrange multiplier), one obtains optimal error estimates in certain weighted Sobolev norms. The main ingredient of the analysis is a sequence of projectors in the weighted norms satisfying some commutativity properties.

  相似文献   


18.
The Neumann problem for a strongly nonlinear second-order elliptic equation in divergence form is approximated by primal hybrid finite element methods defined by Raviart and Thomas. Existence and uniqueness of the approximation are proved, and optimal order error estimates are established in various norms. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
We present error estimates of a linear fully discrete scheme for a three-dimensional mass diffusion model for incompressible fluids (also called Kazhikhov–Smagulov model). All unknowns of the model (velocity, pressure and density) are approximated in space by C 0-finite elements and in time an Euler type scheme is used decoupling the density from the velocity–pressure pair. If we assume that the velocity and pressure finite-element spaces satisfy the inf–sup condition and the density finite-element space contains the products of any two discrete velocities, we first obtain point-wise stability estimates for the density, under the constraint lim(h,k)→0 h/k = 0 (h and k being the space and time discrete parameters, respectively), and error estimates for the velocity and density in energy type norms, at the same time. Afterwards, error estimates for the density in stronger norms are deduced. All these error estimates will be optimal (of order O(h+k){\mathcal{O}(h+k)}) for regular enough solutions without imposing nonlocal compatibility conditions at the initial time. Finally, we also study two convergent iterative methods for the two problems to solve at each time step, which hold constant matrices (independent of iterations).  相似文献   

20.
We prove an optimal‐order error estimate in a weighted energy norm for finite volume method for two‐dimensional time‐dependent advection–diffusion equations on a uniform space‐time partition of the domain. The generic constants in the estimates depend only on certain norms of the true solution but not on the scaling parameter. These estimates, combined with a priori stability estimates of the governing partial differential equations with full regularity, yield a uniform estimate of the finite volume method, in which the generic constants depend only on the Sobolev norms of the initial and right side data but not on the scaling parameter. We use the interpolation of spaces and stability estimates to derive a uniform estimate for problems with minimal or intermediate regularity, where the convergence rates are proportional to certain Besov norms of the initial and right‐hand side data. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 17‐43, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号