首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
本文主要介绍了二维可饱和吸收体材料在固体激光器中的应用与研究进展。简要介绍了新型二维材料的性质和优点。以石墨烯、拓扑绝缘体、过渡金属硫化物和黑磷等新型二维材料为例分析了它们在固体激光器中实现调Q或锁模的过程,展示了二维材料在脉冲固体激光研究中的重要应用前景。二维材料与固体激光器的结合,可进一步推进二维材料的研究,有望开发出大量新型固体激光器件并且作为基础光源应用于多个领域,推动相关领域的发展。  相似文献   

2.
Using a new resonator concept guaranteeing fundamental mode operation, flashlamp pumped Nd lasers with average output powers of 46 and 47 W for the two materials were realized with beam qualities better than 1.2*DL. Due to the absence of thermally induced birefringence the efficiency of the Nd:YALO laser was up to 1.85% and thus 1.5 times higher than that of the realized Nd:YAG laser. The Nd:YALO laser output is linear polarized. Average output power of 100 W could be extracted from a Nd:YAG single rod oscillator with a beam quality of better than 3.7×DL.  相似文献   

3.
We study theoretically and experimentally different methods to control the pulses emitted by solid-state lasers passively Q-switched by a saturable absorber. We explore one- and two-axis laser schemes allowing to control the pulse duration, which is ruled by the saturation powers of the transitions in the absorber and in the gain medium. In one-axis lasers, it is shown that the adjustment of the pump and laser beam sizes in the active medium and in the absorber provides an efficient means to control the pulse temporal shape and duration. Furthermore, a two-axis laser cavity supporting so-called forked-eigenstate operation permits to freely adjust the parts of the mode power which circulate in the gain medium and in the absorber. In this case, a lengthening of the pulse duration up to 500 ns is obtained with an increase of the average output power. The theoretical results obtained by using rate equations adapted to each cavity geometry are in close agreement with experiments performed on a diode-pumped Nd3+:YAG laser Q-switched by a Cr4+:YAG saturable absorber. The relevance of the different techniques to control the pulse durations in the framework of potential applications is discussed. Received 3 December 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号