首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, a new method of purification for actinorhodin was developed using an expanded bed chromatography technique in which antibiotic capture, feedstock clarification, centrifugation, dialysis and concentration are done in one step. The cation-exchanger (P-11) resulted in 26% adsorption and 2% recovery whereas the anion-exchanger (DE-52) resulted in 99% adsorption and 56% recovery of adsorbed antibiotic using methanol buffer and 2 M NH4Cl as eluting agent. Streamline DEAE anion-exchanger, which is especially designed for EBA applications, yields 82% adsorption and 50% elution of actinorhodin fed into the chromatography column directly from the fermentation broth. Isocratic elution resulted in extremely efficient yield compared to linear gradient elution, i.e. 13.5-fold more recovery in the column with an aspect ratio (L:D) of 4. Expansion by 150% of settled bed resulted in the best recovery of actinorhodin among 100 and 200% expansions. A comparison of breakthrough profiles in packed and expanded bed adsorption showed that the performance of the expanded bed is better (by 33%) at allowing more volume of the fermentation broth to pass through the chromatography column.  相似文献   

2.
Three techniques (liquid–liquid extraction, packed bed adsorption and expanded bed adsorption) have been compared for the purification of flavonoids from the leaves of Ginkgo biloba L. A crude Ginkgo extract was obtained by refluxing with ethanol for 3 h. The yield of flavonoids achieved by this crude extraction was about 19% (w/w) and the purity of flavonoids in the concentrated extract was between 1.9 and 2.3% (w/w). The crude extract was then dissolved in deionized water and centrifuged where necessary to prepare clarified feedstock for further purification. For the method using liquid–liquid extraction with ethyl acetate, the purity, concentration ratio and yield of flavonoids were 25.4–31.0%, 16–18 and >98%, respectively. For the method using packed bed adsorption, Amberlite XAD7HP was selected as the adsorbent and clarified extract was used as the feedstock. The dynamic adsorption breakthrough curves and elution profiles were measured. For a feedstock containing flavonoids at a concentration of 0.25 mg/mL, the appropriate loading volume to reach a 5% breakthrough point during the adsorption stage was estimated to be 550–600 mL for a packed bed of volume 53 mL and a flow rate of 183 cm/h. The results from the elution stage indicated that the majority of impurities were eluted by ethanol concentrations of 40% (v/v) or below and efficient separation of flavonoids from the impurities could be achieved by elution of the flavonoids with 50–80% ethanol reaching an average purity of ∼25%. The recovery yield of flavonoids using the packed bed purification method was about 60% of the flavonoids present in the clarified feedstock (corresponding to around 30% for the total flavonoids in the unclarified crude extract). For the method using expanded bed adsorption also conducted with Amberlite XAD7HP as the adsorbent, the optimal operation conditions scouted during the packed bed experiments were used but unclarified crude extract could be loaded directly into the column. For an expanded bed with a settled bed height of 30 cm, the loss of flavonoids in the column flow-through was about 30%. The two-step elution protocol again proved to be effective in separating the adsorbed impurities and flavonoids. More than 96% of the bound impurities were completely removed by 40% ethanol in the first elution stage and less than 4% remained in the final product eluted by 90% ethanol in the second elution stage. Also, ∼74% of the adsorbed flavonoids on column (corresponding to 51% of the total flavonoids in the unclarified feedstock) were recovered in the product. In addition to higher recovery yield, the average process time to obtain the same amount of product was decreased in the expanded bed adsorption (EBA) process. The results suggest that the adoption of EBA procedures can greatly simplify the process flow sheet and in addition reduce the cost and time to purify flavonoids from Ginkgo biloba. These results clearly demonstrate the potential for the use of EBA to purify pharmaceuticals from plant sources.  相似文献   

3.
New adsorbents Q HyperZ and CM HyperZ composed of hydrogel-filled porous zirconium oxide particles were evaluated for expanded bed adsorption applications in the present work. The HyperZ adsorbents have wet density of 3.16 g ml(-1), particle size of 44.5-100.8 microm and average sphere diameter of 67 microm. The bed expansion as the function of flow velocity and fluid viscosity was measured and correlated with Richardson-Zaki equation. The suitable expansion factor was considered less than 2.5, while the corresponding flow velocity was about 450 cmh(-1). Liquid mixing in the bed was determined to evaluate the stability of expanded bed. The Bodenstein numbers tested were higher than 40 and the axial mixing coefficients (D(ax)) were between 0.5 and 9.7x10(-6)m(2)s(-1), which demonstrated that a stable expanded bed could be formed under suitable operation conditions. Bovine serum albumin (BSA) and lysozyme were used as model proteins to estimate the adsorption capacities of Q and CM HyperZ, respectively. The maximum equilibrium adsorption of Q and CM HyperZ could reach 45.7 and 27.2 mg g(-1) drained adsorbents, respectively. It was found that yeast cells had little influence on the adsorption capacities of the two adsorbents tested. The dynamic adsorption capacity of BSA at 10% breakthrough with Q HyperZ was 35.9 mg g(-1) drained adsorbent at flow velocity of 100 cm h(-1) for packed bed adsorption. The values for expanded bed adsorption were 34.4 mg g(-1) drained adsorbent at flow velocity of 200 cm h(-1), 33.6 mg g(-1) drained adsorbent at 300 cm h(-1) and 31.7 mg g(-1) drained adsorbent 400 cm h(-1). The results demonstrated that Q HyperZ and CM HyperZ are suitable for expanded bed adsorption of biomolecules.  相似文献   

4.
A novel prototype polymer-coated adsorbent (PCA) has been developed for the effective expanded bed recovery of protein products from particulate feedstocks. The adsorbents were manufactured using the three-phase emulsification process by which the selected core phases (anion- and cation-exchangers and a custom-assembled pseudo-affinity adsorbent) were coated by an agarose gel. This new non-stick exterior coating acts as a sieve reducing the non-specific binding of cell and cell debris without diminution of selective capture of target protein from complex feedstocks such as whole microbial broths and cell disruptates. The new coated adsorbents were subjected to physical and hydrodynamical comparison with the performance of their uncoated adsorbents. Hydrodynamic characteristics (e.g. axial dispersion coefficient (D(axl)) and Bodenstein number (B(o))) of PCA demonstrated a marked robustness in the face of biomass loading disrupted yeast cells. In addition, each adsorbent was compared with its uncoated native form during the expanded bed adsorption of one of two intracellular proteins (i.e. glyceraldehyde 3-phosphate dehydrogenase and cytochrome c) from a 20% (ww/v) yeast disruptate. The performance parameters of efficiency of washing, purification factor, turbidity of the eluted product and protein recovery in all analysed cases were favourable to the coated materials. In particular, exploiting PCA reduced significantly undesirable adsorption of cells without significant loss of binding capacity for the target product. The generic application of such adsorbents and their potential for the recovery of target products from complex feedstock is discussed, whilst other application such as the subtractive purification of nanoparticles were detailed in our previous publication.  相似文献   

5.
Direct recovery of hepatitis B core antigen (HBcAg) from unclarified Escherichia coli homogenates via expanded bed adsorption chromatography (EBA) has been explored in this study. Streamline DEAE was selected as the anion exchanger to recover HBcAg from heat-treated and non-heat-treated unclarified feedstocks. The use of anion-exchanger for direct extraction of proteins from unclarified feedstock is not preferred due to lack of specificity of its ligand. In this study, thermal treatment of the unclarified feedstock at 60 degrees C has resulted in 1.2- and 1.8-fold increases in yield and purity of HBcAg, respectively, compared with that purified from non-heat-treated feedstock. Heating the crude feedstock has resulted in denaturation and precipitation of contaminants in the feedstock, hence reducing non-specific interactions between the cell debris and adsorbent. The selectivity of the anion-exchanger has also been increased as shown in the breakthrough curve obtained. Enzyme-linked immunosorbent assay showed that the antigenicity of the HBcAg from heat-treated unclarified feedstock is still preserved.  相似文献   

6.
The effect of salt concentration on the adsorption and desorption of BSA has been determined for a polymeric anion-exchanger based on acrylamido monomers. The material investigated possesses a high adsorption capacity at low salt concentration and the bound protein can be recovered quantitatively at high salt concentrations. The effects of salt on adsorption and desorption rates were evaluated from batch and shallow-bed experiments, and a model was developed to describe the data quantitatively. The adsorption capacity decreases as the salt concentration is increased, but both adsorption and desorption rates increase at higher salt concentrations. The predictability of the behavior of columns packed with this material was examined by comparing model predictions and experimental results obtained in laboratory columns. In general, a good agreement was obtained between predicted and experimental breakthrough and elution profiles, especially in shorter columns. Thus, the model allows a prediction of the effects of column length, mobile phase flow-rate, protein feed concentration, and salt concentration on dynamic capacity, productivity, and on the concentration of product fractions.  相似文献   

7.
DNA-induced aggregation and contraction of expanded bed adsorption chromatography beds have been examined using strong anion exchanger Q HyperZ and calf thymus DNA in buffers containing added NaCl. Two batches of adsorbent with different ionic capacities were used allowing the effects of different ligand densities to be examined. Very high dynamic binding capacities at 10% breakthrough were found in the absence of added salt. However, the highest binding capacities ( approximately 10 and approximately 19mgDNAml(-1) gel) were found in buffers containing added salt at concentrations of either 0.25 or 0.35M, for the low and high ligand density adsorbents, respectively. Bed contraction was observed, but did not correlate with dynamic binding capacity or with the amount of DNA loaded. No differences in bed contraction were seen by varying the concentration of DNA loaded in the range of 20-80mugml(-1) even though the dynamic binding capacity was reduced as DNA concentration was increased. The extent of bed contraction during DNA loading was found to be a function of added salt concentration and ligand density of the adsorbent. The results imply that ligand density significantly affects the salt tolerance of anion exchangers when binding DNA. However, more importantly, with the adsorbents examined here, attempts to reduce bed aggregation by feedstock conditioning with added salt may increase DNA binding leading to a reduction in expanded bed adsorption performance compromising protein capture in real feedstocks.  相似文献   

8.
Yao K  Yun J  Shen S  Wang L  He X  Yu X 《Journal of chromatography. A》2006,1109(1):103-110
A novel continuous supermacroporous monolithic cryogel embedded with nanometer-size particles was prepared by the radical cryogenic co-polymerization of acrylamide (AAm), N,N'-methylene-bis-acrylamide (MBAAm), allyl glycidyl ether (AGE) and the dispersed surfactant-stabilized Fe3O4 nanoparticles under the freezing-temperature variation condition in a glass column. This special separation matrix has interconnected supermacropores with pore size of 10-50 microm, which permit the free-passage of microbial cells or cell debris in the culture fluids and then is interest in downstream processes. The axial liquid dispersion coefficients of the new continuous supermacroporous monolithic bed at different liquid flow rates were obtained by measuring residence time distributions (RTDs) using tracer pulse-response method. The experimental results showed that the axial liquid dispersion within the bed was weak in a wide water flow rate of 0.5-15 cm/min. The axial dispersion coefficient was found to be increased exponentially with the increase of liquid flow rate. Chromatographic process of bovine serum albumin (BSA) in the cryogel monolithic bed was carried out to reveal the protein breakthrough and elution characteristics. Compared with other reported cryogel beds in literature, the protein adsorption capacity of the present cryogel bed was improved due to the embedded nano-sized solid adsorbents in the gel matrix. Microstructure morphology of the embedded nanoparticles in the cryogel and the gel matrix structure were also analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in this paper.  相似文献   

9.
Affinity purification of proteins using expanded beds.   总被引:5,自引:0,他引:5  
The use of expanded beds of affinity adsorbents for the purification of proteins from feedstocks containing whole or broken cells is described. It is demonstrated that such feedstocks can be applied to the bed without prior removal of particulate material by centrifugation or filtration thus showing considerable potential for this approach in simplifying downstream processing flow-sheets. A stable, expanded bed can be obtained using simple equipment adapted from that used for conventional packed bed adsorption and chromatography processes. Circulation and mixing of the adsorbent particles is minimal and liquid flow through the expanded bed shows characteristics similar to those of plug flow. Frontal analysis performed with the highly selective affinity system involving the adsorption of human polyclonal immunoglobulin G onto Protein A Sepharose Fast Flow indicate that the adsorption performance of the expanded bed is similar to that achieved when the same amount of adsorbent is used in a packed configuration at the same volumetric flow-rate. The adsorption performance of the expanded bed was not diminished when adsorption was carried out in the presence of intact yeast cells. Batch adsorption experiments also indicated that the adsorption characteristics of the affinity system were not greatly altered in the presence of cells in contrast to results from a less selective ion-exchange system. An expanded bed of Cibacron Blue Sepharose Fast Flow was used to purify phosphofructokinase from feedstock of disrupted yeast prepared by high pressure homogenisation without the need for prior removal of particulate material. The potential for the use of expanded beds in large scale purification systems is discussed.  相似文献   

10.
Expanded bed adsorption (EBA) is a primary recovery operation allowing the adsorption of proteins directly from unclarified feedstock, e.g. culture suspensions, homogenates or crude extracts. Thus solid-liquid separation is combined with adsorptive purification in a single step. The concept of integration requires that the solid components of the feed solution are regarded as a part of the process, which influences stability, reproducibility, and overall performance. This aspect is investigated here at the example of the influence of presence and concentration of intact yeast cells (S. cerevisiae) on the adsorption of model proteins (hen egg white lysozyme and bovine serum albumin) to various stationary phases (cation and anion-exchange, hydrophobic interaction, immobilised metal affinity). The interaction of the cells with the adsorbents is determined qualitatively and quantitatively by a pulse response method as well as by a finite bath technique under different operating conditions. The consequence of these interactions for the stability of expanded beds in suspensions of varying cell concentration is measured by residence time distributions (RTDs) after tracer pulse injection (NaBr, LiCl). Analysis of the measured RTD by the PDE model allows the calculation of the fraction of perfectly fluidised bed (phi), a parameter which may be regarded as a critical quantity for the estimation of the quality of fluidisation of adsorbents in cell containing suspensions. The correlation between bed stability and performance is made by analysing the breakthrough of model proteins during adsorption from unclarified yeast culture broth. A clear relationship is found between the degree of cell/adsorbent interaction, bed stability in terms of the phi parameter, and the sorption efficiency. Only beds characterised by a phi value larger than 0.8 in the presence of cells will show a conserved performance compared to adsorption from cell free solutions. A drop in phi, which is due to interactions of the fluidised adsorbent particles with cells from the feed, will directly result in a reduced breakthrough efficiency. The data presented highlight the importance of including the potential interaction of solid feedstock components and the expanded adsorbents into the design of EBA processes, as the interrelation found here is a key factor for the overall performance of EBA as a truly integrated operation.  相似文献   

11.
In the present work, a new method of purification for antithrombin was developed using an expanded bed chromatography technique. Milk fat was removed by centrifugation and caseins were precipitated selectively by addition of zinc chloride. Crude skim milk was then directly fed to an expanded bed column containing the ion-exchange matrix. The use of a cation-exchanger (P-11) resulted in 100% adsorption and 13% recovery whereas the use of an anion-exchanger (DE-52) resulted in 100% adsorption and 84% recovery and up to five-fold purification of antithrombin. The buffer, 25 mM Tris-HCl pH 8.0; the eluting agent, 2 M (NH4)2SO4; and 100% expansion of settled bed were determined to be the optimum conditions for the purification of antithrombin by ion-exchange expanded bed chromatography. A comparison of column diameters revealed that the elution yields increase by two-fold while the column diameter increases from 1 to 2.5 cm. However, antithrombin III was concentrated to a higher degree by using the column with an internal diameter of 1 cm.  相似文献   

12.
p‐Aminohippuric acid is a newly developed ligand for mixed‐mode chromatography with a commercial resin name of Nuvia cPrime. In this study, bovine immunoglobulin G and bovine serum albumin were used as two model proteins, and the adsorption isotherms with Nuvia cPrime were investigated under different pH and salt concentrations. The results showed that pH had a strong but different influence on the adsorption of these two proteins. The adsorption capacity for bovine immunoglobulin G and BSA was 170.4 and 28.1 mg/g at pH 6.0, respectively. Different salts also showed varying effects on the protein adsorption. Moreover, the adsorption and elution behaviors of the two proteins in a column were determined under varying pH and salt concentrations. An optimized process showed that feedstock loaded under pH 6.0 with 0.8 M (NH4)2SO4 and eluted under pH 8.0 with 1.0 M NaCl could effectively purify bovine immunoglobulin G from feedstock containing BSA. The purity of bovine immunoglobulin G could reach 99.8% and the recovery was 92.7%. The results demonstrated that the control of pH and salt addition during the loading and elution processes were two key factors in improving separation efficiency with Nuvia cPrime resin.  相似文献   

13.

Expanded bed adsorption (EBA) is a practical method for the separation of nanoparticulates. In order to analysis the local hydrodynamic and adsorption behavior of nanoparticle (NP)-based biological feedstock, a modified Nano Biotechnology Group EBA column with a 26-mm inner diameter was used to withdraw liquid from different axial positions of the column. Fabricated egg albumin (EA) NPs with an average size of 70 nm were employed as a model system and viral size/charge mimic to assess the relationship between hydrodynamic and adsorption performance of NPs at the different column regions. The effects of influential factors, including flow velocity and initial concentration of NPs, on NP hydrodynamic behavior and adsorption kinetics along the bed height were investigated. NP hydrodynamic studies confirmed that non-uniform behavior dominated the system and a decreasing trend of liquid mixing/dispersion with increase of bed height was observed in this column. The results demonstrated an increase in the mixing/dispersion at certain bed heights with the increase in both the velocity and feed initial concentration. Breakthrough curves were measured at various column points to determine the adsorption performance [dynamic binding capacity (DBC) and yield] in different bed positions/zones. Yield and DBC of NPs were improved along the bed height, whereas liquid velocity had the opposite effect. Increasing the initial concentration of NPs enhanced only the DBC. Separation of EA NPs under optimal conditions was 87 %, which is an excellent result for a one-pass frontal chromatography method.

  相似文献   

14.
A direct recovery of recombinant nucleocapsid protein of Nipah virus (NCp-NiV) from crude Escherichia coli (E. coli) homogenate was developed successfully using a hydrophobic interaction expanded bed adsorption chromatography (HI-EBAC). The nucleic acids co-released with the recombinant protein have increased the viscosity of the E. coli homogenate, thus affected the axial mixing in the EBAC column. Hence, DNase was added to reduce the viscosity of feedstock prior to its loading into the EBAC column packed with the hydrophobic interaction chromatography (HIC) adsorbent. The addition of glycerol to the washing buffer has reduced the volume of washing buffer applied, and thus reduced the loss of the NCp-NiV during the washing stage. The influences of flow velocity, degree of bed expansion and viscosity of mobile phase on the adsorption efficiency of HI-EBAC were studied. The dynamic binding capacity at 10% breakthrough of 3.2 mg/g adsorbent was achieved at a linear flow velocity of 178 cm/h, bed expansion of two and feedstock viscosity of 3.4 mPa s. The adsorbed NCp-NiV was eluted with the buffer containing a step gradient of salt concentration. The purification of hydrophobic NCp-NiV using the HI-EBAC column has recovered 80% of NCp-NiV from unclarified E. coli homogenate with a purification factor of 12.5.  相似文献   

15.
Expanded bed adsorption (EBA) is a practical method for the separation of nanoparticulates. In order to analysis the local hydrodynamic and adsorption behavior of nanoparticle (NP)-based biological feedstock, a modified Nano Biotechnology Group EBA column with a 26-mm inner diameter was used to withdraw liquid from different axial positions of the column. Fabricated egg albumin (EA) NPs with an average size of 70?nm were employed as a model system and viral size/charge mimic to assess the relationship between hydrodynamic and adsorption performance of NPs at the different column regions. The effects of influential factors, including flow velocity and initial concentration of NPs, on NP hydrodynamic behavior and adsorption kinetics along the bed height were investigated. NP hydrodynamic studies confirmed that non-uniform behavior dominated the system and a decreasing trend of liquid mixing/dispersion with increase of bed height was observed in this column. The results demonstrated an increase in the mixing/dispersion at certain bed heights with the increase in both the velocity and feed initial concentration. Breakthrough curves were measured at various column points to determine the adsorption performance [dynamic binding capacity (DBC) and yield] in different bed positions/zones. Yield and DBC of NPs were improved along the bed height, whereas liquid velocity had the opposite effect. Increasing the initial concentration of NPs enhanced only the DBC. Separation of EA NPs under optimal conditions was 87?%, which is an excellent result for a one-pass frontal chromatography method.  相似文献   

16.
Novel dense composite adsorbents for expanded bed adsorption of protein have been fabricated by coating 4% agarose gel onto Nd-Fe-B alloy powder by a water-in-oil emulsification method. Two composite matrices, namely Nd-Fe-B alloy-densified agarose (NFBA) gels with different size distributions and densities, NFBA-S (50-165 microm, 1.88 g/ml) and NFBA-L (140-300 microm, 2.04 g/ml), were produced. Lysozyme was used as a model protein to test the adsorption capacity and kinetics for the NFBA gels modified by Cibacron blue 3GA (CB-NFBA gels). Liquid-phase dispersion behavior in the expanded beds was examined by measurements of residence time distributions, and compared with that of Streamline SP (Amersham-Pharmacia Biotech, Sweden). The dependence of axial mixing in the expanded beds on flow velocity, bed expansion degree. settled bed height, and viscosity of liquid phase was investigated. Breakthrough curves of lysozyme in the expanded beds of the CB-NFBA gels were also examined. The dynamic binding capacity at 5% breakthrough was 23.3 mg/ml matrix for the CB-NFBA-S gels, and 16.7 mg/ml matrix for the CB-NFBA-L, at a flow velocity of 220 cm/h. The results indicate that the NFBA gels are promising for expanded bed adsorption of proteins.  相似文献   

17.
Expanded bed adsorption was investigated together with its suitability for the practical recovery of nanoparticulate mimics of products such as plasmid DNA and viruses as putative gene therapy vectors. The study assessed the binding of protein nanoparticles fabricated from bovine serum albumin (BSA) with average size of 80 nm as a model system and viral size/charge mimic to the streamline DEAE adsorbent in the expanded bed column chromatography. The adsorption kinetics and adsorption mechanism for the BSA nanoparticles on the adsorbent were studied. In batch adsorption studies, the factors nanoparticle concentration, contact time and adsorbent amount, affecting adsorption isotherms were investigated. Subsequently the data were regressed against the Lagergren equation, which represents a first-order kinetics equation and also against a pseudo-second-order kinetics equation. The results demonstrated that the adsorption process followed a Langmuir isotherm equation. The kinetics of the adsorption process followed a pseudo-second-order kinetics model with a rate constant value of 0.025 g mg?1 min?1. The dynamic binding capacity of the BSA nanoparticles on an expanded bed was calculated. The recovery of the nanoparticles was more than 85%.  相似文献   

18.
The effects of protein size on the adsorption capacity and rate is determined for an acrylamido-based polymeric anion-exchanger. The proteins lactalbumin, myoglobin, ovalbumin, BSA, conalbumin, IgG, and ferritin with molecular masses ranging from 15,000 to 450,000 were investigated. At high salt concentration (50 mM Tris-HCl containing 500 mM NaCl), only the smaller proteins lactalbumin and myoglobin gained access to a significant portion of the particle volume. The larger proteins were nearly completely excluded, in agreement with the results obtained for neutral macromolecules. By contrast, at low salt concentration (50 mM Tris-HCl), the adsorption capacity was very large (280-400 mg/ml of particle volume) for all the proteins studied except for ferritin, for which the capacity was much lower. This suggests that, provided the solute is not too large, the favorable electrostatic interaction overcomes the size exclusion effect. Adsorption rate measurements showed that mass transfer rates are also quite fast at low salt concentration. Effective diffusivities were determined by matching model and experimental results and were found to decrease substantially as the protein size increased. As previously observed, the homogeneous diffusion model was found to predict the experimentally observed trends with respect to protein concentration and boundary layer mass transfer effects.  相似文献   

19.
4-(1H-imidazol-1-yl) aniline (AN) was immobilized on Sepharose CL-6B (AN-Sepharose) for use as a new ligand of mixed-mode chromatography. Adsorption equilibria of immunoglobulin G (IgG) and bovine serum albumin (BSA) to AN-Sepharose were studied at extensive pH values (4.0–8.8) and salt concentrations (0–1.0 mol/L). Static binding studies indicated that AN-Sepharose had a good salt-tolerance property for IgG adsorption up to 1.0 mol/L NaCl. This was attributed to the combined ligand–protein interactions (hydrophobic interaction, hydrogen bonding and charge transfer interaction). By contrast with BSA, AN-Sepharose showed a high binding selectivity for IgG at NaCl > 0.2 mol/L. Dynamic binding capacities (DBC) of IgG and BSA at 10% breakthrough were measured at pH 4.0–8.8 by frontal analysis chromatography. IgG had DBC values over 40 mg/mL at pH 7.0–8.8, and the maximum reached 59 mg/mL at pH 8.0. At pH 5.0, a distinct drop in DBC to 8.5 mg/mL was observed, but that for BSA kept over 22 mg/mL. The result suggested that IgG could be selectively desorbed from AN-Sepharose by decreasing pH to about 5. Therefore, compared to BSA, AN-Sepharose exhibited a dual-selectivity for IgG in both adsorption and elution. Purification of IgG from bovine serum also confirmed the dual-selectivity. IgG purity of the pooled fractions by elution at pH 4.0, 4.5 and 5.0 reached 55% and the highest purity, 80%, was obtained at pH 4.5. The average purification factor of IgG was over 25. The results indicate that AN is a promising ligand of mixed-mode chromatography for antibody purification from a complex feedstock.  相似文献   

20.
The General Rate model has been developed and solved to describe protein adsorption in an expanded bed. The model takes into account axial and local variation of particle size distribution (PSD), external and intra-particle mass transfer resistances, and dispersion in liquid phase. The influence of PSD on breakthrough profiles has been analysed. The simulation results show that for a significantly high expanded bed the lower part of the breakthrough curve profiles, calculated for local particle size distribution (LPSD) and for axial average particle size distribution (APSD) are very similar. However, the upper part of breakthrough profiles calculated for LPSD approaches inlet concentration much more slowly than those calculated for APSD. The retention times of the lower part of uptake curves calculated with average particle diameter are constantly shorter than those obtained from LPSD. For the calculation of the dynamic capacity (DC), the LPSD can be replaced by APSD for large expanded bed heights. Using breakthrough profiles calculated for average particle size, DC values are constantly underestimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号