首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
王瑞强  蒋开明 《中国物理 B》2009,18(12):5443-5450
The nonequilibrium Kondo effect is studied in a molecule quantum dot coupled asymmetrically to two ferromagnetic electrodes by employing the nonequilibrium Green function technique. The current-induced deformation of the molecule is taken into account, modeled as interactions with a phonon system, and phonon-assisted Kondo satellites arise on both sides of the usual main Kondo peak. In the antiparallel electrode configuration, the Kondo satellites can be split only for the asymmetric dot-lead couplings, distinguished from the parallel configuration where splitting also exists, even though it is for symmetric case. We also analyze how to compensate the splitting and restore the suppressed zero-bias Kondo resonance. It is shown that one can change the TMR ratio significantly from a negative dip to a positive peak only by slightly modulating a local external magnetic field, whose value is greatly dependent on the electron--phonon coupling strength.  相似文献   

2.
We calculate the differential conductance G(V) through a quantum dot in an applied magnetic field. We use a Keldysh conserving approximation for weakly correlated and the scattering-states numerical renormalization group for the intermediate and strongly correlated regime out of equilibrium. In the weakly correlated regime, the Zeeman splitting observable in G(V) strongly depends on the asymmetry of the device. In contrast, in the strongly correlated regime the position Δ(K) of the Zeeman-split zero-bias anomaly is almost independent of such asymmetries and of the order of the Zeeman energy Δ(0). We find a crossover from the purely spin-fluctuation driven Kondo regime at small magnetic fields with Δ(K)<Δ(0) to a regime at large fields where the contribution of charge fluctuations induces larger splittings with Δ(K)>Δ(0) as it was observed in recent experiments.  相似文献   

3.
The conductance through a mesoscopic system of interacting electrons coupled to two adjacent leads is conventionally derived via the Keldysh nonequilibrium Green’s function technique, in the limit of noninteracting leads [Y. Meir, N.S. Wingreen, Phys. Rev. Lett. 68 (1992) 2512]. We extend the standard formalism to cater for a quantum dot system with Coulombic interactions between the quantum dot and the leads. The general current expression is obtained by considering the equation of motion of the time-ordered Green’s function of the system. The nonequilibrium effects of the interacting leads are then incorporated by determining the contour-ordered Green’s function over the Keldysh loop and applying Langreth’s theorem. The dot–lead interactions significantly increase the height of the Kondo peaks in density of states of the quantum dot. This translates into two Kondo peaks in the spin differential conductance when the magnitude of the spin bias equals that of the Zeeman splitting. There also exists a plateau in the charge differential conductance due to the combined effect of spin bias and the Zeeman splitting. The low-bias conductance plateau with sharp edges is also a characteristic of the Kondo effect. The conductance plateau disappears for the case of asymmetric dot–lead interaction.  相似文献   

4.
We measure transport through gold grain quantum dots fabricated using electromigration, with magnetic impurities in the leads. A Kondo interaction is observed between dot and leads, but the presence of magnetic impurities results in a gate-dependent zero-bias conductance peak that is split due to a RKKY interaction between the spin of the dot and the static spins of the impurities. A magnetic field restores the single Kondo peak in the case of an antiferromagnetic RKKY interaction. This system provides a new platform to study Kondo and RKKY interactions in metals at the level of a single spin.  相似文献   

5.
We study competition between the Kondo effect and superconductivity in a single self-assembled InAs quantum dot contacted with Al lateral electrodes. Because of Kondo enhancement of Andreev reflections, the zero-bias anomaly develops side peaks, separated by the superconducting gap energy Delta. For ten valleys of different Kondo temperature T(K) we tune the gap Delta with an external magnetic field. We find that the zero-bias conductance in each case collapses onto a single curve with Delta/k(B)T(K) as the only relevant energy scale, providing experimental evidence for universal scaling in this system.  相似文献   

6.
We have measured the current (I)-voltage (V) characteristics of a single-wall carbon nanotube quantum dot coupled to superconducting source and drain contacts in the intermediate coupling regime. Whereas the enhanced differential conductance dI/dV due to the Kondo resonance is observed in the normal state, this feature around zero-bias voltage is absent in the superconducting state. Nonetheless, a pronounced even-odd effect appears at finite bias in the dI/dV subgap structure caused by Andreev reflection. The first-order Andreev peak appearing around V=Delta/e is markedly enhanced in gate-voltage regions, in which the charge state of the quantum dot is odd. This enhancement is explained by a "hidden" Kondo resonance, pinned to one contact only. A comparison with a single-impurity Anderson model, which is solved numerically in a slave-boson mean-field approach, yields good agreement with the experiment.  相似文献   

7.
We consider electrons confined to a quantum dot interacting antiferromagnetically with a spin-1 / 2 Kondo impurity. The electrons also interact among themselves ferromagnetically with a dimensionless coupling J , where J =1 denotes the bulk Stoner transition. We show that as J approaches 1 there is a regime with enhanced Kondo correlations, followed by one where the Kondo effect is destroyed and impurity is spin polarized opposite to the dot electrons. The most striking signature of the first, Stoner-enhanced Kondo regime is that a Zeeman field increases the Kondo scale, in contrast to the case for noninteracting dot electrons. Implications for experiments are discussed.  相似文献   

8.
We investigate the nonequilibrium transport properties of a quantum dot when spin flip processes compete with the formation of a Kondo resonance in the presence of ferromagnetic leads. Based upon the Anderson Hamiltonian in the strongly interacting limit, we predict a splitting of the differential conductance when the spin flip scattering amplitude is of the order of the Kondo temperature. We discuss how the relative orientation of the lead magnetizations strongly influences the electronic current and the shot noise in a nontrivial way. Furthermore, we find that the zero-bias tunneling magnetoresistance becomes negative with increasing spin flip scattering amplitude.  相似文献   

9.
We have investigated magneto-optical properties of GaSb/GaAs self-assemble type II quantum dots by single dot spectroscopy in magnetic field. We have observed clear Zeeman splitting and diamagnetic shift of GaSb/GaAs quantum dots. The diamagnetic coefficient ranges from 5 to 30 μeV/T2. The large coefficient and their large distribution are attributed to the size inhomogeneity and electron localization outside the dot. The g-factor of GaSb/GaAs quantum dots is slightly larger than that of similar type I InGaAs/GaAs quantum dots. In addition, we find almost linear relationship between the diamagnetic coefficient and the g-factor. The linear increase of g-factor with diamagnetic coefficient is due to an increase of spin-orbit interaction with dot size.  相似文献   

10.
We report about spatially resolved magneto-optical experiments on a self-assembled InGaAs quantum dot. Using electron beam lithograpy for patterning a metal shadow mask we can isolate a single dot. This allows us to study the optical response of a single dot as a function of excitation power and magnetic field. We investigate the influence of many body interaction in the emission spectra for different exciton occupation numbers of the dot. The diamagnetic/orbital shift as well as Zeeman splitting in a magnetic field can be fully resolved and are used to identify the observed emission lines. Further we report on absorption properties of the quantum dot as a function of magnetic field. We analyse in detail the phonon-assisted absorption process connected with the GaAs LO-phonon 36 meV above the single-exciton ground state.  相似文献   

11.
We study the Kondo effect in a quantum dot coupled to ferromagnetic leads and analyze its properties as a function of the spin polarization of the leads. Based on a scaling approach, we predict that for parallel alignment of the magnetizations in the leads the strong-coupling limit of the Kondo effect is reached at a finite value of the magnetic field. Using an equation of motion technique, we study nonlinear transport through the dot. For parallel alignment, the zero-bias anomaly may be split even in the absence of an external magnetic field. For antiparallel spin alignment and symmetric coupling, the peak is split only in the presence of a magnetic field, but shows a characteristic asymmetry in amplitude and position.  相似文献   

12.
Strong electron and spin correlations in a double quantum dot (DQD) can give rise to different quantum states. We observe a continuous transition from a Kondo state exhibiting a single-peak Kondo resonance to another exhibiting a double peak by increasing the interdot coupling (t) in a parallel-coupled DQD. The transition into the double-peak state provides evidence for spin entanglement between the excess electrons on each dot. Toward the transition, the peak splitting merges and becomes substantially smaller than t because of strong Coulomb effects. Our device tunability bodes well for future quantum computation applications.  相似文献   

13.
We investigate the linear and nonlinear transport through a single level quantum dot connected to two ferromagnetic leads in Kondo regime, using the slave-boson mean-field approach for finite on-site Coulomb repulsion. We find that for antiparallel alignment of the spin orientations in the leads, a single zero-bias Kondo peak always appears in the voltage-dependent differential conductance with peak height going down to zero as the polarization grows to P=1. For parallel configuration, with increasing polarization from zero, the Kondo peak descends and greatly widens with the appearance of shoulders, and finally splits into two peaks on both sides of the bias voltage around P~0.7 until disappearing at even larger polarization strength. At any spin orientation angle θ, the linear conductance generally drops with growing polarization strength. For a given finite polarization, the minimum linear conductance always appears at θ=π.  相似文献   

14.
The Kondo effect and the Andreev reflection tunneling through a normal (ferromagnet)-double quantum dots-superconductor hybrid system is examined in the low temperature by using the nonequilibrium Green's function technique in combination with the slave-boson mean-field theory. The interplay of the Kondo physics and the Andreev bound state physics can be controlled by varying the interdot hopping strength. The Andreev differential conductance is mainly determined by the competition between Kondo states and Andreev states. The spin-polarization of the ferromagnetic electrode increases the zero-bias Kondo peak. The spin-flip scattering influences the Kondo effect and the Andreev reflection in a nontrivial way. For the ferromagnetic electrode with sufficiently large spin polarization, the negative Andreev differential conductance is found when the spin flip strength in the double quantum dots is sufficiently strong.  相似文献   

15.
We derive an expression for the total spin-splitting energy in an asymmetric quantum dot with ferromagnetic contacts, subjected to a transverse electric field. Such a structure has been shown by one of us to act as a spintronic quantum gate with in-built qubit readers and writers (Phys. Rev. B61, 13813 (2000)). The ferromagnetic contacts result in a magnetic field that causes a Zeeman splitting of the electronic states in the quantum dot. We show that this Zeeman splitting can be finely tuned with a transverse electric field as a result of nonvanishing Rashba spin–orbit coupling in an asymmetric quantum dot. This feature is critical for implementing a quantum gate.  相似文献   

16.
The transport properties of a single quantum dot were measured at low temperature in a regime of strong asymmetric tunnel coupling to leads. By tuning this asymmetry, the two parameters of the Kondo effect in a quantum dot, the Kondo temperature and the zero-bias zero-temperature conductance, were independently controlled. A careful analysis of the Coulomb energies and of the tunnel couplings was performed. It allowed an estimate of the Kondo temperature independently of its value obtained via the temperature dependence of the conductance. Both are in good agreement. We finally compared our experimental data with an exact solution of the Kondo problem which provides the dependence of the differential conductance on temperature and source-drain voltage. Theoretical expectations fit quite well our experimental data in the equilibrium and out-of-equilibrium regimes.  相似文献   

17.
We measure the spin splitting in a magnetic field B of localized states in single-electron transistors using a new method, inelastic spin-flip cotunneling. Because it involves only internal excitations, this technique gives the most precise value of the Zeeman energy Delta=/g/mu(B)B. In the same devices we also measure the splitting with B of the Kondo peak in differential conductance. The Kondo splitting appears only above a threshold field as predicted by theory. However, the magnitude of the Kondo splitting at high fields exceeds 2/g/mu(B)B in disagreement with theory.  相似文献   

18.
利用隶玻色子平均场近似理论,并借助于单杂质的Anderson模型的哈密顿量,研究了T型耦合双量子点嵌入正常电极的基态输运性质.结果表明:在体系处于平衡状态时,随着双量子点的耦合强度增加,体系的Kondo 效应被削弱. 当耦合强度足够强时,Kondo量子点态密度的Kondo共振单峰分裂成两个不对等的Kondo共振双峰.在体系处于非平衡状态时,增加两电极的偏压,态密度的Kondo分裂的非对等性明显加强. 关键词: Kondo效应 态密度 格林函数法 耦合双量子点  相似文献   

19.
When an asymmetric double dot is hybridized with itinerant electrons, its singlet ground state and lowly excited triplet state cross, leading to a competition between the Zhang-Rice mechanism of singlet-triplet splitting in a confined cluster and the Kondo effect (which accompanies the tunneling through quantum dot under a Coulomb blockade restriction). The rich physics of an underscreened S = 1 Kondo impurity in the presence of low-lying triplet-singlet excitations is exposed and estimates of the magnetic susceptibility and the electric conductance are presented, together with applications for molecule chemisorption on metallic substrates.  相似文献   

20.
Spin and charge transport through a quantum dot coupled to external nonmagnetic leads is analyzed theoretically in terms of the non-equilibrium Green function formalism based on the equation of motion method. The dot is assumed to be subject to spin and charge bias, and the considerations are focused on the Kondo effect in spin and charge transport. It is shown that the differential spin conductance as a function of spin bias reveals a typical zero-bias Kondo anomaly which becomes split when either magnetic field or charge bias are applied. Significantly different behavior is found for mixed charge/spin conductance. The influence of electron-phonon coupling in the dot on tunneling current as well as on both spin and charge conductance is also analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号