首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polar Kerr effect in the spin-triplet superconductor Sr2RuO4 was measured with high precision using a Sagnac interferometer with a zero-area Sagnac loop. We observed nonzero Kerr rotations as big as 65 nanorad appearing below Tc in large domains. Our results imply a broken time-reversal symmetry state in the superconducting state of Sr2RuO4, similar to 3He-A.  相似文献   

2.
It was proposed that the id(x(2)-y(2)) density-wave state (DDW) may be responsible for the pseudogap behavior in the underdoped cuprates. Here we show that the admixture of a small d(xy) component to the DDW state breaks the symmetry between the counterpropagating orbital currents of the DDW state and, thus, violates the macroscopic time-reversal symmetry. This symmetry breaking results in a nonzero polar Kerr effect, which has recently been observed in the pseudogap phase.  相似文献   

3.
The magnetic properties of CaF2/Co/CaF2(110)/Si(001) heterostructures fabricated by molecular-beam epitaxy and having a corrugated CaF2 buffer surface were studied. The optical and magneto-optical properties of these structures reflect the C 2v symmetry of the corrugated structure surface. The studies of hysteresis loops using the longitudinal and transverse magneto-optical Kerr effects under oblique light incidence and of magneto-optical phenomena under near-normal light incidence demonstrate that the corrugated structure surface leads to optical and magneto-optical anisotropies. The magnetization of such structures occurs via coherent magnetization rotation over a wide magnetic-field range. The magnetic anisotropy of these structures is described using a Gaussian distribution of easy axes of magnetization in cobalt granules about the direction parallel to the groove direction. The asymmetry of hysteresis loops of the rotation of the plane of polarization detected under oblique and normal light incidence is shown to be related to the contributions to the effective film permittivity that are quadratic in the magnetic moment.  相似文献   

4.
Electron fractionalization is intimately related to topology. In one-dimensional systems, fractionally charged states exist at domain walls between degenerate vacua. In two-dimensional systems, fractionalization exists in quantum Hall fluids, where time-reversal symmetry is broken by a large external magnetic field. Recently, there has been a tremendous effort in the search for examples of fractionalization in two-dimensional systems with time-reversal symmetry. In this Letter, we show that fractionally charged topological excitations exist on graphenelike structures, where quasiparticles are described by two flavors of Dirac fermions and time-reversal symmetry is respected. The topological zero modes are mathematically similar to fractional vortices in p-wave superconductors. They correspond to a twist in the phase in the mass of the Dirac fermions, akin to cosmic strings in particle physics.  相似文献   

5.
Symmetry and spin dephasing in (110)-grown GaAs quantum wells (QWs) are investigated applying magnetic field induced photogalvanic effect and time-resolved Kerr rotation. We show that magnetic field induced photogalvanic effect provides a tool to probe the symmetry of (110)-grown quantum wells. The photocurrent is only observed for asymmetric structures but vanishes for symmetric QWs. Applying Kerr rotation we prove that in the latter case the spin relaxation time is maximal; therefore, these structures set the upper limit of spin dephasing in GaAs QWs. We also demonstrate that structure inversion asymmetry can be controllably tuned to zero by variation of delta-doping layer positions.  相似文献   

6.
We calculate the electric-dipole and magnetic-quadrupole form factors of the deuteron that arise as a low-energy manifestation of parity and time-reversal violation in quark-gluon interactions. We consider the QCD vacuum angle and the dimension-six operators that originate from physics beyond the standard model: the quark electric and chromoelectric dipole moments and the gluon chromoelectric dipole moment. Within the framework of two-flavor chiral perturbation theory, we show that in combination with the nucleon electric dipole moment, the deuteron moments would allow an identification of the dominant source(s) of symmetry violation.  相似文献   

7.
We theoretically discuss the influence of driving laser field on the topological nature, one of the manifestation of the electron Berry phase effect, in two-dimensional electronic systems. Adiabatic change of the laser amplitude with circular polarization alters the “order parameter”, termed the Chern number, in topological insulator with broken time-reversal symmetry, resulting in photo-induced phase transition. The finding is an optical analog of the integer quantum Hall effect, that is triggered by the laser field instead of magnetic field. This parallelism suggests the similarity of effects to electron dynamics between circularly polarized light and magnetic field.  相似文献   

8.
We have measured the magnetic field dependence of the ordered antiferromagnetic moment and the magnetic excitations in the heavy-fermion superconductor URu2Si2 for fields up to 17 T applied along the tetragonal c axis, using neutron scattering. The decrease of the magnetic intensity of the tiny moment with increasing field does not follow a simple power law, but shows a clear inflection point, indicating that the moment disappears first at the metamagnetic transition at approximately 40 T. This suggests that the moment m is connected to a hidden order parameter psi which belongs to the same irreducible representation breaking time-reversal symmetry. The magnetic excitation gap at the antiferromagnetic zone center Q = (1,0,0) increases continuously with increasing field, while that at Q = (1.4,0,0) is nearly constant. This field dependence is opposite to that of the gap extracted from specific-heat data.  相似文献   

9.
《Physics letters. A》2014,378(22-23):1647-1650
In a recent paper, Gohler et al. [1] report that a high efficiency electron spin filter can be constructed from an adsorbed monolayer of double-stranded DNA (dsDNA). Understanding the mechanisms responsible for spin filtering under these conditions has proven to be a challenge, as classical analysis fails to account for the high degree of polarization observed. In this paper we show that these observations can be understood since conduction electrons in the DNA molecule are characterized by specific helical states having a magnetic moment opposite to the direction of the electron wavevector. These helical states are fundamental to the quantum-mechanical properties of periodic structures with helical symmetry. Free electrons passing through the DNA monolayer interact with these helical states, but the strength of this interaction depends on the relative orientation of the electron spin and the magnetic moment associated with the possible helical states. One of these configurations leads to a negligible interaction resulting in high spin polarization in the transmitted electron beam. The overall effect is that the free electron flux component with a magnetic moment in an opposite direction to the magnetic moment of the helical states can pass through the dsDNA monolayer without absorption, while the other spin component is highly absorbed by dsDNA. This is consistent with the finding that a monolayer of single-stranded DNA does not exhibit similar spin filtering properties.  相似文献   

10.
The optical Hall conductivity and the polar Kerr angle are calculated as functions of temperature for a two-dimensional chiral p(x) + ip(y) superconductor, where the time-reversal symmetry is spontaneously broken. The theoretical estimate for the polar Kerr angle agrees by the order of magnitude with the recent experimental measurement in Sr2RuO4 by Xia et al. [Phys. Rev. Lett. 97, 167002 (2006)10.1103/PhysRevLett.97.167002]. The theory predicts that the Kerr angle is proportional to the square of the superconducting energy gap and is inversely proportional to the cube of frequency, which can be verified experimentally.  相似文献   

11.
We investigate electrically induced spin currents generated by the spin Hall effect in GaAs structures that distinguish edge effects from spin transport. Using Kerr rotation microscopy to image the spin polarization, we demonstrate that the observed spin accumulation is due to a transverse bulk electron spin current, which can drive spin polarization nearly 40 microns into a region in which there is minimal electric field. Using a model that incorporates the effects of spin drift, we determine the transverse spin drift velocity from the magnetic field dependence of the spin polarization.  相似文献   

12.
We study perfect valley polarization in a molybdenum disulfide (MoS2) nanoribbon monolayer using two bands Hamiltonian model and non-equilibrium Green’s function method. The device consists of a one-dimensional quantum wire of MoS2 monolayer sandwiched between two zigzag MoS2 nanoribbons such that the sites A and B of the honeycomb lattice are constructed by the molecular orbital of Mo atoms, only. Spin-valley coupling is seen in energy dispersion curve due to the inversion asymmetry and time-reversal symmetry. Although, the time reversal symmetry is broken by applying an external magnetic field, the valley polarization is very small. A valley polarization equal to 46% can be achieved using an exchange field of 0.13 eV. It is shown that a particular spin-valley combination with perfect valley polarization can be selected based on a given set of exchange field and gate voltage as input parameters. Therefore, the valley polarization can be detected by detecting the spin degree of freedom.  相似文献   

13.
Magnetic Weyl semimetals(WSMs) with broken time-reversal symmetry(TRS) hosting topological band structures are expected to provide an ideal platform for investigating topological superconductivity and spintronics. However, the experimental verification of magnetic WSMs is very challenging. Very recently, the kagome magnet Co_3Sn_2S_2 was confirmed to be a magnetic WSM by both angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy and consequently has become the focus of great attention. This paper reports a point-contact Andreev-reflection spectroscopy(PCARS) investigation on the(001) surface and the side surface of the Co_3Sn_2S_2 single crystals, respectively. The measurements from the sample's(001) and side surfaces provide experimental evidence for transport spin polarization in the Co_3Sn_2S_2 magnetic WSM. Furthermore, the superconducting proximity effect in the Co_3Sn_2S_2 single crystal is successfully detected. The point-contact spectra(PCS) along the in-plane direction cannot be well fitted by theoretical models based on s-wave pairing, indicating that possible triplet p-wave superconductivity may be triggered at the interface, which paves the way for the future exploration of the topological superconductivity and Majorana states in broken TRS WSMs.  相似文献   

14.
Giant optical activity in quasi-two-dimensional planar nanostructures   总被引:2,自引:0,他引:2  
We examine the spectral dependence in the visible frequency range of the polarization rotation of two-dimensional gratings consisting of chiral gold nanostructures with subwavelength features. The gratings, which do not diffract, are shown to exhibit giant specific rotation (approximately 10(4) degrees/mm) of polarization in direct transmission at normal incidence. The rotation is the same for light incident on the front and back sides of the sample. Such reciprocity indicates three dimensionality of the structure arising from the asymmetry of light-plasmon coupling at the air-metal and substrate-metal interfaces. The structures thus enable polarization control with quasi-two-dimensional planar objects. However, in contradiction with recently suggested interpretation of experiments on larger scale but otherwise similar structures, the observed polarization phenomena violate neither reciprocity nor time-reversal symmetry.  相似文献   

15.
刘丹  胡森 《物理学报》2019,68(2):24206-024206
基于光子晶体来构筑偏振无关光二极管在光电集成领域具有重大的应用价值.首先提出了一种环形孔光子晶体,能带结构显示其对横电及横磁模式同时展现出显著的方向带隙.以此构建了三角形状的环形孔光子晶体,利用时域有限差分法计算其透过谱及场分布图,发现该结构能实现偏振无关单向传输特性,然而正向透过率太低(约20%).进一步引入尺寸较小的三角形状的环形孔光子晶体构成光子晶体异质结结构,有效地提高了偏振无关单向传输性能,正向透过率增大了一倍.通过界面结构的调整,正向透过率进一步增大,优化后的环形孔光子晶体异质结结构能同时对类横电及类横磁模式入射光实现单向传输,且正向透过率达到了44%.  相似文献   

16.
王莉岑  邱晓东  张志友  石瑞英 《物理学报》2015,64(17):174202-174202
光子自旋霍尔效应类似于电子系统中的电子自旋霍尔效应, 是在折射率梯度和光子分别扮演的外场和自旋电子的角色下, 由自旋-轨道相互作用而产生的光子自旋分裂现象. 光子自旋霍尔效应为操控光子提供了新的途径, 同时也提供了一种精确测量相关物理效应的方法. 本文研究了磁光克尔效应中光子自旋分裂现象, 建立了磁光克尔旋转与光子自旋霍尔效应之间的定量关系, 并通过弱测量系统观测了磁场作用下铁膜表面的光子自旋分裂位移, 得到相应的磁光旋转角, 验证了我们所推导的理论预测. 本文的研究成果为精确测量磁光克尔系数和磁光克尔旋转角提供了一种新方法.  相似文献   

17.
We identify an intrinsic Hall effect in multiband chiral superconductors in the absence of a magnetic field (i.e., an anomalous Hall effect). This effect arises from interband transitions involving time-reversal symmetry-breaking chiral Cooper pairs. We discuss the implications of this effect for the putative chiral p-wave superconductor, Sr2RuO4, and show that it can contribute significantly to Kerr rotation experiments. Since the magnitude of the effect depends on the structure of the order parameter across the bands, this result may be used to distinguish between different models proposed for the superconducting state of Sr2RuO4.  相似文献   

18.
The effect of the moment of a magnetic impurity on the order parameter of an unconventional superconductor is examined. The coupling of the magnetic moment to the order parameter induces a locally time-reversal symmetry-breaking state which generates a magnetic field distribution in the vicinity of the impurity. The magnetic field can cause precession of the magnetic moment. The case of a spin polarized muon injected into the superconductor is discussed. Zh. éksp. Teor. Fiz. 112, 304–312 (July 1997) Published in English in the original Russian journal. Reproduced here with stylistic changes by the Translation Editor.  相似文献   

19.
The polar Kerr effect in the high-T_(c) superconductor YBa2Cu3O6+x was measured at zero magnetic field with high precision using a cyogenic Sagnac fiber interferometer. We observed nonzero Kerr rotations of order approximately 1 microrad appearing near the pseudogap temperature T(*) and marking what appears to be a true phase transition. Anomalous magnetic behavior in magnetic-field training of the effect suggests that time reversal symmetry is already broken above room temperature.  相似文献   

20.
采用中心波长800 nm、脉宽30 fs的超短激光脉冲,通过飞秒光开关技术对CS_2的飞秒超快非线性特性进行了实验研究.在探测光强与抽运光强比为1∶10时,得到了较理想的光克尔时间分辨曲线.通过实验测定的光克尔信号强度与激发光和探测光偏振方向夹角的依赖关系表明:30 fs的超短激光脉冲激发CS_2的克尔信号主要是源于光诱导双折射效应,而非用200 fs的超短激光脉冲时来自瞬态栅的自衍射效应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号