首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
局域共振型声学超材料机理探讨   总被引:1,自引:0,他引:1       下载免费PDF全文
刘娇  侯志林  傅秀军 《物理学报》2015,64(15):154302-154302
本文以二维固体薄板中的弹性波传播为例, 对基于共振子结构的声学超材料带隙机理进行了探讨, 证明在声学超材料中带隙形成既与共振子对波的散射相位有关, 也与波在共振体之间的几何传播相位有关. 通过调节散射相位和几何传播相位均能实现对色散关系的调控. 基于这一理解, 探究了弹性波超材料中的次波长缺陷态和负折射现象的实现条件.  相似文献   

2.
《Physics letters. A》2020,384(20):126510
We investigate the topologically protected sound propagation in sonic metamaterials, analogous to quantum spin hall effect (QSHE). The sonic metamaterials consist of circular rods and meta-molecules arranged in air with a honeycomb-lattice. The on-demand inversion in topological phase can be achieved by two ways of scatterer controls at locally resonant frequency and Bragg frequency. The Helmholtz resonators in the structure are contributed to the formation of subwavelength double Dirac cones which are more likely to appear due to local resonance enhancement with more number of resonators. By combining two sonic metamaterials with different topological invariants, we demonstrate the robust sound propagation and pseudospin-dependent one-way acoustic propagation at the interface. Experimental measurement of the topologically protected acoustic wave transmission matches well with the simulation result.  相似文献   

3.
钱枫  全力  王力维  刘晓宙  龚秀芬 《中国物理 B》2016,25(2):24301-024301
The acoustic wave propagation from a two-dimensional subwavelength slit surrounded by metal plates decorated with Helmholtz resonators(HRs) is investigated both numerically and experimentally in this work. Owing to the presence of HRs, the effective impedance of metal surface boundary can be manipulated. By optimizing the distribution of HRs,the asymmetric effective impedance boundary will be obtained, which contributes to generating tunable acoustic radiation pattern such as directional acoustic beaming. These dipole-like radiation patterns have high radiation efficiency, no fingerprint of sidelobes, and a wide tunable range of the radiation pattern directivity angle which can be steered by the spatial displacements of HRs.  相似文献   

4.
We demonstrate that by utilizing displacement currents in simple dielectric resonators instead of conduction currents in metallic split-ring resonators and by additionally exciting the proper modes, left-handed properties can be observed in an array of high dielectric resonators. Theoretical analysis and experimental measurements show that the modes, as well as the subwavelength resonance, play an important role in the origin of the left-handed properties. The proposed implementation of a left-handed metamaterial, based on a purely dielectric configuration, opens the possibility of realizing media at terahertz frequencies since scaling issues and losses, two major drawbacks of metal-based structures, are avoided.  相似文献   

5.
This paper presents a theoretical and experimental study of noise control in enclosures using a T-shaped acoustic resonator array. A general model with multiple resonators is developed to predict the acoustic performance of small resonators placed in an acoustic enclosure. Analytical solutions for the sound pressure inside the enclosure and the volume velocity source strength out of the resonator aperture are derived when a single resonator is installed, which provides insight into the physics of acoustic interaction between the enclosure and the resonator. Based on the understanding of the coupling between the individual resonators and enclosure modes, both targeted and nontargeted, a sequential design methodology is proposed for noise control in the enclosure using an array of acoustic resonators. Design examples are given to illustrate the control performance at a specific or at several resonance peaks within a frequency band of interest. Experiments are conducted to systematically validate the theory and the design method. The agreement between the theoretical and experimental results shows that, with the help of the presented theory and design methodology, either single or multiple resonance peaks of the enclosure can be successfully controlled using an optimally located acoustic resonator array.  相似文献   

6.
Acoustic metamaterials constructed by resonant microelements in subwavelength scale were generally characterized by the effective medium approximation theory, which neglects the interaction between adjacent elements. In this paper, we show that twisting the orientation of resonators in acoustic metamaterials produces secondary coupled resonant modes by introducing internal vibration interaction. Metamaterials composed of a single-slit Helmholtz resonator arranged in two-dimensional square lattice are investigated. We rotate a portion of the resonator so that the adjacent resonators in a ??X direction have a twist angle of ??. For the system with ??=180°, the coupling interaction produces the symmetric coupled mode in in-phase oscillation and the antisymmetric coupled mode in out-of-phase oscillation. This acoustic analog of ??hybridization effect?? leads to a sharp transparency window in the extended locally-resonant forbidden gap, which is analogous to the phenomenon of electromagnetically induced transparency. Such coupled resonant modes may have potential applications in sound wave manipulations such as acoustic filtering and imaging.  相似文献   

7.
Measurements of engineered subwavelength microstructures can be designed to have positive or negative and μ at desired frequencies. We present transmission measurements of a metamaterial consisting of split ring resonators (SRR). Results for different polarizations and propagation directions are presented. The transmission shows a dip even for propagations perpendicular to the SRR plane, provided that the incident electric field is parallel to the sides of the split ring resonators (SRRs) which contain the cuts. The experimental results agree well with the theoretical calculations.  相似文献   

8.
We demonstrate, for the first time, an all-dielectric metamaterial composite in the midinfrared based on micron-sized, high-index tellurium dielectric resonators. Dielectric resonators are desirable compared to conventional metallodielectric metamaterials at optical frequencies as they are largely angular invariant, free of Ohmic loss, and easily integrated into three-dimensional volumes. Measurements and simulation provide evidence of optical magnetism, which could be used for infrared magnetic mirrors, hard or soft surfaces, and subwavelength cavities.  相似文献   

9.
Ultrasonic standing waves can be used to generate radiation forces on particles within a fluid. A number of authors have derived detailed representations of these forces but these are most commonly applied using an approximation to the energy distribution based upon an idealized standing wave within a mode based upon rigid boundaries. An electro-acoustic model of the acoustic energy distribution within a standing wave with arbitrary thickness boundaries has been expanded to model the radiation force on an example particle within the acoustic field. This is used to examine the force profile on a particle at resonances other than those predicted with rigid boundaries, and with pressure nodes at different positions. A simple analytical method for predicting modal conditions for combinations of frequencies and layer thickness characteristics is presented, which predicts that resonances can exist that will produce a pressure node at arbitrary positions in the fluid layer of such a system. This can be used to design resonators that will drive particles to positions other than the center of the fluid layer, including the fluid/solid boundary of the layer, with significant potential applications in sensing systems. Further, the model also predicts conditions for multiple subwavelength resonances within the fluid layer of a single resonator, each resonance having different nodal planes for particle concentration.  相似文献   

10.
A one-dimensional magnetic plasmon propagating in a linear chain of single split ring resonators is proposed. The subwavelength size resonators interact mainly through exchange of conduction current, resulting in stronger coupling as compared to the corresponding magneto-inductive interaction. Finite-difference time-domain simulations in conjunction with a developed analytical theory show that efficient energy transfer with signal attenuation of less then 0.57 dB/microm and group velocity higher than 1/4c can be achieved. The proposed novel mechanism of energy transport in the nanoscale has potential applications in subwavelength transmission lines for a wide range of integrated optical devices.  相似文献   

11.
Sonic crystals can be used as acoustic lenses in certain frequencies and the design of such systems by creating vacancies and using genetic algorithms has been proven to be an effective method. So far, rigid cylinders have been used to create such acoustic lens designs. On the other hand, it has been proven that Helmholtz resonators can be used to construct acoustic lenses with higher refraction index as compared to rigid cylinders, especially in low frequencies by utilizing their local resonances. In this paper, these two concepts are combined to design acoustic lenses that are based on Helmholtz resonators. The Multi-Level Wave Based Method is used as the prediction method. The benefits of the method in the context of design procedure are demonstrated. In addition, symmetric boundary conditions are derived for more efficient calculations. The acoustic lens designs that use Helmholtz resonators are compared with the acoustic lens designs that use rigid cylinders. It is shown that using Helmholtz resonator based sonic crystals leads to better acoustic lens designs, especially at the low frequencies where the local resonances are pronounced.  相似文献   

12.
Yang L  Min C  Veronis G 《Optics letters》2010,35(24):4184-4186
We introduce a plasmonic waveguide system, which supports a subwavelength broadband slow-light guided mode with a tunable slowdown factor at a given wavelength. The system consists of a metal-dielectric-metal (MDM) waveguide side-coupled to a periodic array of MDM stub resonators. The slowdown factor at a given wavelength can be tuned by adjusting the geometrical parameters of the system. In addition, there is a trade-off between the slowdown factor and the propagation length of the supported optical mode. Finally, we show that light can be coupled efficiently from a conventional MDM waveguide to the plasmonic waveguide system.  相似文献   

13.
Hyperlenses based on metamaterials can be applied to subwavelength imaging in the lightwave band.In this letter,we demonstrate both through simulations and experimentally verified results that our proposed halfcylindrical shaped hyperlens can be used for super-resolution microwave focusing in a TE mode.Based on split ring resonators,the hyperlens satisfies a hyperbolic dispersion relationship.Simulations demonstrate that the focused spot size and position are insensitive to the rotation angle of the hyperlens around its geometric center.Experimental results show that a focused spot size 1/3 of the vacuum wavelength is achieved in the microwave band.  相似文献   

14.
Among various plasmonic waveguides, the metal-insulator-metal (MIM) type is the most promising for true subwavelength photonic integration. To date, many photonic devices based on MIM waveguides have been investigated, including resonators. However, most of the reported MIM ring resonators suffer from low extinction ratios and the reasons are unexplored in the literature. In this paper, we present a comprehensive analysis of the underlying causes of the low performance of MIM ring resonators, and give the analytical transmission relation for a universal all-pass ring resonator with coupling loss. Based on the analysis we propose plasmonic racetrack resonators in MIM waveguides and show that the performance can be greatly improved.  相似文献   

15.
We experimentally demonstrate subwavelength resolution imaging at microwave frequencies by a three-dimensional (3D) photonic-crystal flat lens using full 3D negative refraction. The photonic crystal was fabricated in a layer-by-layer process. A subwavelength pinhole source and a dipole detector were employed for the measurement. By point-by-point scanning, we obtained the image of the pinhole source shown in both amplitude and phase, which demonstrated the imaging mechanism and subwavelength feature size in all three dimensions. An image of two pinhole sources with subwavelength spacing showed two resolved spots, which further verified subwavelength resolution.  相似文献   

16.
We provide an overview of our recent work on developing subwavelength grating(SWG) waveguide devices as an enabling technology for integrated microwave photonics. First, we describe wavelength-selective SWG waveguide filters, including ring resonators, Bragg gratings, and contradirectional couplers. Second, we discuss the development of an index variable optical true time delay line that exploits spatial diversity in an equal-length waveguide array. These SWG waveguide components are fundamental building blocks for realizing more complex structures for advanced microwave photonic signal processing.  相似文献   

17.
We report strong near-field electromagnetic localization by using subwavelength apertures and metamaterials that operate at microwave frequencies. We designed split ring resonators with distinct configurations in order to obtain extraordinary transmission results. Furthermore, we analyzed the field localization and focusing characteristics of the transmitted evanescent waves. The employed metamaterial configurations yielded an improvement on the transmission efficiency on the order of 27 dB and 50 dB for the deep subwavelength apertures. The metamaterial loaded apertures are considered as a total system that offered spot size conversion ratios as high as 7.12 and 9.11 for the corresponding metamaterial configurations. The proposed system is shown to intensify the electric fields of the source located in the near-field. It also narrows down the electromagnetic waves such that a full width at half maximum value of λ/29 is obtained.  相似文献   

18.
The article focuses on acoustic resonators made of perforated sheets bonded onto honeycomb cavities. This kind of resonators can be used in adverse conditions such as high temperature, dirt and mechanical constraints. For all these reasons, they are, for example, widely used in aeronautic applications. The acoustic properties are directly linked to the size, shape and porosity of holes and to the thickness of air gaps. Unfortunately, the acoustic absorption of these resonators is selective in frequency and conventional acoustic resonators are only well adapted to tonal noises. In case of variable tonal noise, the efficiency is limited if the resonators are not tunable. One common solution is to control the depth of cavities based on the noise to be attenuated. This article proposes another technology of tunable resonators with only a very small mass and size increase. It consists of two superposed and identically perforated plates associated with cavities. One plate is fixed and bonded to the cavities and the other plate is mobile. The present concept enables to change the internal shapes of the holes of the perforated layers. The article describes this system and gives a theoretical model of the normal incidence acoustic impedance that allows to predict the acoustic behavior, in particular the resonance frequency. The model shows that the resonance frequency varies with hole profiles and that the absorption peak moves towards the lower frequencies. The proposed model is validated by measurements on various configurations of resonators tested in an impedance tube. The perspectives of this work are to adapt the hole profiles using an actuator in order to perform active control of impedance.  相似文献   

19.
20.
We show the strong optically induced interactions between discrete metamolecules in a metamaterial system and coherent monochromatic continuous light beam with a spatially tailored phase profile can be used to prepare a subwavelength scale energy localization. Well-isolated energy hot spots of a fraction of a wavelength can be created and positioned on the metamaterial landscape offering new opportunities for data storage and imaging applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号