首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, the Langmuir monolayer technique was applied to study the interactions between sphingomyelin and various sterols differing in the structure of the side chain (cholesterol, beta-sitosterol, stigmasterol). The mean area per molecule and the excess free energy of mixing values were analyzed in the context of sterol-induced condensing effect and interactions between molecules in the mixed monolayers. Moreover, the compression modulus values were calculated and widely discussed from the point of view of the ordering effect of sterols. It was found that all of the sterols investigated form the most stable monolayers with sphingomyelin at 2:1 sphingomyelin:sterol proportion and the strongest interactions exist between molecules in cholesterol-containing films. Moreover, cholesterol provokes the strongest area condensation and reveals the highest ordering properties, while plant sterols were found to differ only slightly with regards to their ordering properties. Additionally, the ordering effect of the sterols on dipalmitoylphosphatidylcholine (DPPC) films was analyzed and compared to that on sphingomyelin films.  相似文献   

2.
N-(1-piperidinepropionyl)amphotericin B methyl ester (in short, PAME), a low-toxicity amphotericin B derivative, has been investigated in Langmuir monolayers at the air/water interface alone and in mixtures with cellular membrane sterols (a mammalian sterol, cholesterol, and a fungal sterol, ergosterol) and a model phospholipid (DPPC). The analysis of the strength of interaction between PAME and both sterols as well as DPPC was based, on surface pressure measurements and analysis of the isothermal compressibility (C(s)(-1)), the mean area per molecule (A(12)), the excess free energy of mixing (DeltaG(Exc)) and the total free energy of mixing (DeltaG(M)). It has been found that the interactions between PAME and sterols are attractive; however, their strength is significantly weaker for mixtures of PAME with cholesterol than with ergosterol. This casts light on the improved selectivity of PAME toward fungal cells. The strongest interactions, found for PAME/DPPC mixtures, proved an important role of DPPC in the mechanism of reduced toxicity of PAME as compared to amphotericin B. Due to stable complex formation between PAME and DPPC the antibiotic is immobilized with DPPC molecules, which reduces the concentration of free antibiotic, which is capable of interacting with membrane sterols.  相似文献   

3.
This work presents the results of Langmuir monolayers study of two amphotericin B derivatives obtained by N-acylation (N-acetylamphotericin B, Ac-AmB) and esterification (amphotericin B methyl ester, AME) of the parent AmB molecule. The main objective of present investigations was to examine the strength and nature of interactions of Ac-AmB and AME with natural membrane components as compared to AmB, and verify the monolayer results with biological studies in vitro. Our experiments were based on surface pressure-area measurements of mixed monolayers formed by the investigated antibiotics and sterols/DPPC. The interactions were analyzed with the following dependencies: compression modulus-surface pressure, mean molecular area-composition, excess molecular area-composition and excess free energy-composition plots. It has been found that both Ac-AmB and AME form monolayers of a liquid expanded state and their stability is highest as compared to AmB films. The investigated compounds mix in monolayers with natural membrane components within the whole range of the antibiotic mole fraction. The quantitative analysis of the interactions of the investigated antibiotics with sterols and DPPC as well as sterols/DPPC interactions allow us to verify the monolayer results with biological results. A good correlation between both kinds of studies has been found.  相似文献   

4.
A model biomimetic system for the study of protein reconstitution or drug interactions should include lipid rafts in the mixed lipid monolayer, since they are usually the domains embedding membrane proteins and peptides. Four model lipid films composed of three components: 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), cholesterol (Chol) and sphingomyelin (SM) mixed in different molar ratios were proposed and investigated using surface pressure measurements and thermodynamic analysis of the monolayers at the air–water interface and imaged by Brewster angle microscopy. The ternary monolayers were transferred from the air–water onto the gold electrodes to form bilayer films and were studied for the first time by electrochemical methods: alternative current voltammetry and electrochemical impedance spectroscopy and imaged by atomic force microscopy. In excess of DOPC, the ternary systems remained too liquid for the raft region to be stable, while in the excess of cholesterol the layers were too solid. The layers with SM in excess lead to the formation of Chol:SM complexes but the amount of the fluid matrix was very low. The equimolar content of the three components lead to the formation of a stable and well-organized assembly with well-developed raft microdomains of larger thickness, surrounded by the more fluid part of the bilayer. The latter is proposed as a convenient raft model membrane for further physicochemical studies of interactions with drugs or pollutants or incorporation of membrane proteins.  相似文献   

5.
Pulmonary lung surfactant is a mixture of surfactants that reduces surface tension during respiration. Perfluorinated surfactants have potential applications for artificial lung surfactant formulations, but the interactions that exist between these compounds and phospholipids in surfactant monolayer mixtures are poorly understood. We report here, for the first time, a detailed thermodynamic and structural characterization of a minimal pulmonary lung surfactant model system that is based on a ternary phospholipid-perfluorocarbon mixture. Langmuir and Langmuir-Blodgett monolayers of binary and ternary mixtures of the surfactants 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) and perfluorooctadecanoic acid (C18F) have been studied in terms of miscibility, elasticity and film structure. The extent of surfactant miscibility and elasticity has been evaluated via Gibbs excess free energies of mixing and isothermal compressibilities. Film structure has been studied by a combination of atomic force microscopy and fluorescence microscopy. Combined thermodynamic and microscopy data indicate that the ternary monolayer films were fully miscible, with the mixed films being more stable than their pure individual components alone, and that film compressibility is minimally improved by the addition of perfluorocarbons to the phospholipids. The importance of these results is discussed in context of these mixtures' potential applications in pulmonary lung surfactant formulations.  相似文献   

6.
Different physicochemical properties of Langmuir films (monolayers) composed of 10 mixed systems of a bile acid, deoxycholic acid (DC) with various plant sterols, such as stigmasterol (Stig), beta-sitosterol (Sito) and campesterol (Camp) and a stanol, cholestanol (Chsta) in addition to an animal sterol, cholesterol (Ch) [these sterols and Chsta are abbreviated as St] and DC with 1:1 St mixtures; (Ch+Chsta), (Ch+Stig), (Stig+Chsta), (Ch+Sito) and (Ch+Camp) on the substrate of 5M aqueous NaCl solution (pH 1.2) at 25 degrees C, were investigated in terms of mean surface area per molecule (A(m)), the partial molecular area (PMA), surface excess Gibbs energy (DeltaG((ex))), interaction parameter (I(p)) as well as activity coefficients (f(1) and f(2)) in 2-D phase of each binary (or ternary) component system and elasticity (Cs(-1)) of formed films; these were analyzed on the basis of the respective surface pressure (pi) versus A(m) isotherms as a function of mole fraction of Sts (X(st)) in the DC/St(s) mixtures at discrete surface pressures. Notable findings are: (i) all the binary component systems did form patched film type monolayers consisting of (a) DC-dominant film solubilizing a trace amount of St molecules and (b) St dominant film dissolving a small amount of DC molecules, (ii) DC in 2-D phase exhibited a transition from LE film to LC film at a constant pressure (pi(C)(1)) accompanied by compression and (iii) DeltaG((ex)) as well as I(p) was found to be greatly dependent on (a) the combinations of DC with different St species and (b) to be markedly varied by a difference in mixing ratio of DC to Sts. Compressibility (or elasticity) analyses and fluorescence microscopy images could support the above findings as well as interpretation.  相似文献   

7.
8.
The surface properties of c-Fos, a regulator of normal and pathologic cell growth and a modulator of phospholipid metabolism, suggest that it has the potential to transduce information through molecular reorganization, placing the nature of its interaction with phospholipids at the basis of its possible effects at the membrane level. Previous studies established that c-Fos induces condensation and depolarization of PIP2 films and expansion and hyperpolarization of PC. We have now explored more in depth the thermodynamic aspects of these lipid-protein interactions, finding that the mixtures have associated hysteresis. The analysis of the excess thermodynamic functions provides evidence of entropic-enthalpic compensations that result in a favorable enthalpic contribution derived from the interaction of c-Fos with PIP2, which exceeds the unfavorable configurational entropy. On the contrary, favorable entropy terms dominate the interaction of c-Fos with PC over the unfavorable enthalpy. The free energy of hysteresis is stored as excess free energy. A shift in molecular packing-dependent surface reorganization, compared to that of ideally mixed films, indicates a gain in information content at the lipid-protein interface in mixed films of c-Fos with PIP2 but not with PC. It is postulated that the free energy stored in these mixtures could act as a bidirectional structural information transducer for dynamic compression-expansion processes occurring on the membrane surface.  相似文献   

9.
The ganglioside, GM1, was studied as Langmuir monolayers at the air/water interface with surface pressure-area measurements in addition to Brewster angle microscopy. A characteristic plateau transition, observed on aqueous subphases of pH 2 and 6, 20 degrees C, at the surface pressure of ca. 20 mN/m, was attributed to the reorientation of GM1 polar group upon film compression. This transition was found to disappear at alkaline subphases (pH 10) due to the hydration of fully ionized polar group, hindering its reorientation. The interactions between GM1 and hexadecylphosphocholine (miltefosine) were investigated in mixed monolayers and analyzed with the mean molecular areas, excess areas of mixing and the excess free energy of mixing versus film composition plots. The monolayers stability, quantified by the collapse pressure values, as well as the strength of interaction was found to diminish in the following order: pH 6>pH 2>pH 10. The strongest interaction occurs for mixed films of miltefosine molar fraction, XM=0.7-0.8, especially at low pressure region, and are explained as being due to the surface complex formation of 3:1 or 4:1 (miltefosine:ganglioside) stoichiometry (XM=0.75 or 0.8, respectively).  相似文献   

10.
Phospholipid membranes are ubiquitous components of cells involved in physiological processes; thus, knowledge regarding their interactions with other molecules, including tocopherol ester derivatives, is of great importance. The surface pressure–area isotherms of pure α-tocopherol (Toc) and its derivatives (oxalate (OT), malonate (MT), succinate (ST), and carbo analog (CT)) were studied in Langmuir monolayers in order to evaluate phase formation, compressibility, packing, and ordering. The isotherms and compressibility results indicate that, under pressure, the ester derivatives and CT are able to form two-dimensional liquid-condensed (LC) ordered structures with collapse pressures ranging from 27 mN/m for CT to 44 mN/m for OT. Next, the effect of length of ester moiety on the surface behavior of DPPC/Toc derivatives’ binary monolayers at air–water interface was investigated. The average molecular area, elastic modulus, compressibility, and miscibility were calculated as a function of molar fraction of derivatives. Increasing the presence of Toc derivatives in DPPC monolayer induces expansion of isotherms, increased monolayer elasticity, interrupted packing, and lowered ordering in monolayer, leading to its fluidization. Decreasing collapse pressure with increasing molar ratio of derivatives indicates on the miscibility of Toc esters in DPPC monolayer. The interactions between components were analyzed using additivity rule and thermodynamic calculations of excess and total Gibbs energy of mixing. Calculated excess area and Gibbs energy indicated repulsion between components, confirming their partial mixing. In summary, the mechanism of the observed phenomena is mainly connected with interactions of ionized carboxyl groups of ester moieties with DPPC headgroup moieties where formed conformations perturb alignment of acyl chains, resulting in increasing mean area per molecule, leading to disordering and fluidization of mixed monolayer.  相似文献   

11.
A metallic solution model with adjustable parameter k has been developed to predict thermodynamic properties of ternary systems from those of its constituent three binaries. In the present model, the excess Gibbs free energy for a ternary mixture is expressed as a weighted probability sum of those of binaries and the k value is determined based on an assumption that the ternary interaction generally strengthens the mixing effects for metallic solutions with weak interaction, making the Gibbs free energy of mixing of the ternary system more negative than that before considering the interaction. This point is never considered in the models currently reported, where the only difference in a geometrical definition of molar values of components is considered that do not involve thermodynamic principles but are completely empirical. The current model describes the results of experiments very well, and by adjusting the k value also agrees with those from models used widely in the literature. Three ternary systems, Mg–Cu–Ni, Zn–In–Cd, and Cd–Bi–Pb are recalculated to demonstrate the method of determining k and the precision of the model. The results of the calculations, especially those in Mg–Cu–Ni system, are better than those predicted by the current models in the literature.  相似文献   

12.
Synthetic alkyl-lysophospholipids, represented by edelfosine (ED), reveal strong anticancer activity and therefore are promising drugs used in anticancer therapy. Primary target for edelfosine is cellular membrane, which is in contrast to traditional cytostatics affecting DNA. The mechanism of antitumor activity of edelfosine was hypothesized to be related to its accumulation in membrane rafts. Inspired by these findings, we have performed the Langmuir monolayer studies on the influence of edelfosine on systems composed of sphingomyelin (SM) and cholesterol (Chol), being the principal components of membrane rafts. Sphingomyelin-cholesterol proportion in monolayers was varied to reflect the composition of solely membrane rafts (SM/Chol=2:1) and contain excess of cholesterol (SM/Chol=1:1 and 1:2). Into these systems, edelfosine was added in various concentrations. The analysis of surface pressure-area isotherms, complemented with films visualization with Brewster angle microscopy (BAM) allowed us to compare the effect of edelfosine on condensation and ordering of SM/Chol monolayers. The results evidenced that the influence of ED on the interactions in model membranes and its fluidizing effect is highly cholesterol-dependent. The strongest decrease of monolayer ordering was observed for model raft system, while the excess of cholesterol present in the remaining mixtures was found to weaken the fluidizing effect of the drug.  相似文献   

13.
The studies on the condensing and ordering effect of cholesterol by application of the Langmuir monolayer technique are usually performed on binary lipid/cholesterol systems. The results concerning a quantitative analysis of these effects in multicomponent monolayers are very limited. In this work the condensing and ordering effect of cholesterol in ternary (SM/DSPC/Chol and SM/DOPC/Chol) and quaternary (SM/DSPC/DOPC/Chol) films was investigated. It was evidenced that the systems containing saturated PC (both SM/DSPC and SM/DSPC/Chol) are always more condensed and chain-ordered than the systems containing unsaturated PC (SM/DOPC and SM/DSPC/DOPC and their mixtures with cholesterol). However, the magnitude of condensation provoked by cholesterol at higher surface pressures is stronger on the monolayers containing unsaturated PC. The addition of cholesterol into SM/PC films induces the increase of chain-ordering however, the effectiveness of cholesterol as an ordering agent is determined by the presence/absence of unsaturated phospholipid. The magnitude of the effect of cholesterol on the investigated mixed monolayer was analyzed in the context of the influence of sterol on lipid chains (ordering, straightening and reorientation of chains) as well as the reorientation of polar heads.  相似文献   

14.
Synthetic polymers are increasingly being used in situations where they are designed to interact with biological systems. As a result, it is important to investigate the interactions of the polymers with biochemicals. We have used cholesterol, as an example of an important biological surfactant component, to study its interactions with polystyrene. Mixed monolayers of cholesterol and one of two different molecular weight polystyrenes were formed at an air-water interface to investigate their interactions and to determine whether the size of the polystyrene affected the interaction. The pressure-area (pi-A) isocycles of mixed monolayers of cholesterol and polystyrene MW 2700 or polystyrene MW32700 showed that strongest attractive interactions occur at high surface pressures and in polystyrene rich films. The excess area and excess free energy of mixing were most negative at high surface pressures and at high mole fraction of polystyrene. The most stable mixed monolayers were formed with X(PS2700) = 0.9 and X(PS32700) = 0.09. Microscopic observation of the mixed monolayers of cholesterol and polystyrene showed the formation of stable islands in the cholesterol/polystyrene mixtures. These observations, the nature of the inflection points in the isocycles, and the anomalous changes in free energy lead us to conclude that there is a stable rearrangement of polystyrene into compact islands when it is mixed with cholesterol. Any excess cholesterol is excluded from these islands and remains as a separate film surrounding the islands.  相似文献   

15.
The investigation of the characteristics of mixed floating monolayers of phospholipids and usnic acid (UA), an active metabolite from lichens, can provide valuable information on how to prepare stable liposomes that could serve as carriers of UA for therapeutic proposes. The present paper is concerned with the thermodynamic analysis of the behavior of Langmuir monolayers formed by mixing different phospholipids (dibehenoylphosphatidylcholine, DBPC, dipalmitoylphosphatidylcholine, DPPC, and dioleoylphosphatidylcholine, DOPC) and UA at varied molar fractions. Relevant thermodynamic parameters such as excess areas, excess free energies and free energy of mixing were derived from the surface pressure data obtained from compression measurements performed in a Langmuir trough. For the largest lateral pressure examined (25 mN/m), negative values of the excess free energy were found only for the DOPC/UA monolayer, which should be the most stable of them. Based on the calculated values of the free energy of mixing, we note that the DBPC/UA and DPPC/UA systems present the best mixed character at low pressures and when the molar fraction of the UA is 0.5; at that relative concentration and at low values of the external pressure, the UA molecules can better mix and interact with the phospholipid molecules. The compression isotherms for mixed monolayers show no visible transitions, exhibiting a more organized phase that corresponds to a negative free energy of mixing. We have established that the most stable monolayers were those corresponding to DOPC/UA mixtures with a UA molar fraction of 0.75.  相似文献   

16.
Distearoylphosphatidylcholine (DSPC) spread at the air/water interface is used as a model membrane and to study the lateral interaction between DSPC and distearoylphosphatidylethanolamine-polyethylene glycol 2000 (DSPE-PEG2000). DSPE-PEG2000 was found to be miscible with DSPC by our measurements of surface pressure–area per molecule (ΠA) isotherms at different temperatures. At different temperatures the nonideality and miscibility of mixed monolayer were determined by the analysis of excess area as a function of compositions, and the temperature effects on these deviations from ideality were evaluated. Furthermore, the interfacial thermodynamic characteristics of this mixed system including the change of entropies, the change of latent heats, and excess and mixing free energies during the compression process were calculated from the isotherms as a function of temperature in order to understand factors that affect the stability of mixed monolayer. It was found that increasing temperature and incorporation of DSPE-PEG2000 both may make the mixed monolayer more compressible.  相似文献   

17.
The mixed monolayer behavior of bilirubin/cholesterol was studied through surface pressure-area (?-A) isotherms on aqueous solutions containing various concentrations of calcium ions. Based on the data of ?-A isotherms, the mean area per molecule, collapse pressure, surface compressibility modulus, excess molecular areas, free energy of mixing, and excess free energy of mixing of the monolayers on different subphases were calculated. The results show an expansion in the structure of the mixed monolayer with Ca2+ in subphase, and non-ideal mixing of the components at the air/water interface is observed with positive deviation from the additivity rule in the excess molecular areas. The miscibility between the components is weakened with the increase of concentration of Ca2+ in subphase. The facts indicate the presence of coordination between Ca2+ and the two components. The mixed monolayer, in which the molar ratio of bilirubin to cholesterol is 3:2, is more stable from a thermodynamic point of view on pure water. But the stable 3:2 stoichiometry complex is destroyed with the increase of the concentration of Ca2+ in subphase. Otherwise, the mixed monolayers have more thermodynamic stability at lower surface pressure on Ca2+ subphase.  相似文献   

18.
The critical micelle concentrations of binary mixtures of sodium dodecylsulphate (SDS) and sodium lauroylsarcosinate (SLAS) have been determined in water by conductivity measurements at different mole fractions for each of the components. The critical micelle concentrations were slightly lower than that predicted from ideal mixing theory indicating positive synergistic interactions in mixed micelle formation. The results of the mixed systems were analysed using the Regular Solution Theory and the approach based on the Gibbs–Duhem equation which allowed for the determination of the composition of the mixed micelle, the activity coefficients and the pair-wise molecular interaction parameter β. The β values were all negative at all mole fractions investigated, showing a slight deviation from ideality, with an average value of –0.27. The excess free energy of the mixed systems was also calculated and the values were all negative for the mixed systems studied, an indication that the mixed micelles are thermodynamically stable relative to the individual component. This thermodynamic parameter also exhibits symmetrical behaviour with respect to micellar composition suggestive of a regular solution behaviour of the mixed surfactant system.  相似文献   

19.
Miscibility and interaction of decyldimethylphosphine oxide (DePO) with ammonium chloride (AC), hexylammonium chloride (HAC), and dodecylammonium chloride (DAC) in adsorbed films and micelles were studied by surface tension measurements. Phase diagrams were drawn for the mixed adsorption, mixed micelle formation, and equilibrium between adsorbed films and micelles. Nonideal mixing of DAC and DePO was characterized by a negative excess Gibbs free energy and positive excess area of adsorption and negative excess Gibbs free energy of micelle formation. It is concluded that the interaction between DAC and DePO in adsorbed films and micelles is larger than those between the same surfactants alone due to two factors: ion-dipole interactions between the head groups of DAC and DePO and alkyl-chain/alkyl-chain interactions.  相似文献   

20.
A simple and accurate method based on solid-phase extraction (SPE), transesterification and gas chromatography-mass spectrometry (GC-MS) was developed for the quantitative analysis of free and esterified sterols of olive oil. In order to achieve better separation of esterified and free sterols, silica and alumina SPE adsorbents were tested. Separations by silica provided more reproducible results. The transesterification of both sterol fractions was found to be more user friendly than saponification as a method to liberate the sterols from the respective esters. The free sterols were then silylated with N,O-bis-trimethylsilyltrifluoroacetamide (BSTFA) with 1% of trimethylchlorosilane (TMCS). The most favourable conditions for exploitation of this reagent were established. The optimized methodology was suitable for evaluation of free and esterified sterols in Protected Designation of Origin (PDO) olive oils and monovarietal olive oils with different maturation indices. The prevailing phytosterols in all olive oils were beta-sitosterol and campesterol. The free sterols predominated, although they seemed to decrease with the maturation of the olive fruits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号