首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
An LC-ESI-MS method was developed for the identification and quantification of fructose-1,6-biphosphate (F1,6BP) and fructose-6-phosphate (F6P), respectively the substrate and the product of the enzymatic reaction catalysed by fructose-1,6-bisphosphatase (F1,6BPase). F1,6BPase, expressed predominantly in liver and kidney, is one of the rate-limiting enzymes of hepatic gluconeogenesis and has become a target for the development of new drugs for type 2 diabetes. The two sugar phosphates were separated on a Phenomenex Luna NH2 column (150 mm x 2.0 mm id) using the following mobile phase: 5 mM triethylamine acetate buffer/ACN (80:20) v/v in a linear pH gradient (from pH = 9 to 10 in 15 min) at the flow rate of 0.3 mL/min. The detection was performed with an IT mass spectrometer in negative polarity (full scan 100-450 m/z) and in SIM mode on the generated anions at m/z = 339 (F1,6BP) and m/z = 259 (F6P). Under the optimised final conditions, the method was validated for accuracy, specificity, precision (inter- and intradays RSD comprised between 1.0 and 6.3% over the range of concentrations used), linearity (50-400 microM), LODs (0.44 microM) and LOQs (1.47 microM), and the method was applied to F6P determination in the F1,6BPase catalysed hydrolysis of F1,6BP.  相似文献   

2.
A highly selective, interference free biosensor for the measurement of fructose in real syrup samples was developed. The assay is based on the phosphorylation of d(−)fructose to fructose-6-phosphate by hexokinase and subsequent conversion of fructose-6-phosphate to fructose-1,6-biphosphate by fructose-6-phosphate-kinase. The heat liberated in the second reaction is monitored using an enzyme thermistor. The major advantages of this biosensor are rapid and selective measurement of fructose without the need to eliminate glucose and inexpensive FIA-based, mediator-free calorimetric measurement suitable for regular fructose analysis. This method was optimised for parameters, such as pH, ionic strength, interference, operational stability and shelf life. Good and reproducible linearity (0.5-6.0 mM) with a detection limit of 0.12 mM was obtained. Fructose determination in commercial syrup samples and spiked samples confirmed the reliability of this set-up and technique. The biosensor gave reproducible results with good overall stability for continuous measurements over a period of three months besides a useful shelf life of six months. The method could be used for routine fructose monitoring in food samples.  相似文献   

3.
Fructose-1,6-bisphosphate (F-1,6-P2) is an allosteric activator of two key enzymes of glycolysis: phosphofructokinase and pyruvate kinase. Regulation of glycolysis in a wild-typeSaccharomyces cerevisiae and a recombinantEscherichia coli by a dead-end structural analog of F-1,6-P2 was studied. 2,5-Anhydromannitol (2,5-AM), a structural analog of β-d-fructose, was used. On being taken up by the cells, 2,5-AM was converted into its monophosphate and diphosphate by the enzymes of the glycolytic pathway. The final product, 2,5-anhydromannitol-1,6-bisphosphate, could not be metabolized further and, therefore, accumulated inside the cells. Glucose and fructose were used as substrates. It was found that 2,5-AM at concentrations of 1 mM or less did not have any effect on either substrate consumption or ethanol production. At concentrations of 2,5-AM of 2.5 mM or greater, significant inhibition of both glucose and fructose was observed, with fructose inhibition much more severe. We discuss the possible mechanisms of glycolysis inhibition by 2,5-AM at high concentrations and the regulation of glycolysis by this compound.  相似文献   

4.
Fructose 1,6-bisphosphate aldolase, a glycolytic enzyme, catalyzes the cleavage of fructose 1,6-bisphosphate, resulting in two three-carbon products. The reaction of the class I enzymes, which utilize a Schiff-base intermediate, requires that the hexose be in the open-chain form. This form comprises only 1-2% of the sugar at equilibrium. The chemical form of the substrate that binds to aldolase and begins the catalytic cycle has not been unequivocally demonstrated. Transient-state kinetics in single-turnover experiments of fructose 1,6-bisphosphate with aldolase in excess reveals the rates of the intermediate steps in the cleavage reaction, including those from initial binding to Schiff-base formation. The rate of hexose Schiff-base formation was faster than the uncatalyzed rate for ring-opening of either the alpha- or beta-furanose at 4 degrees C. In addition, approach-to-equilibrium experiments reveal that aldolase binds and reacts first with 70% of fructose-1,6-bisphosphate in a fast reaction, consistent with the amount of beta-anomer in solution, and with the remaining 30%, presumably the alpha-anomer, in a slow reaction. These results indicate that aldolase must catalyze the ring-opening step and that there may be a previously unrecognized second active site on the enzyme for catalyzing this reaction.  相似文献   

5.
This work describes the development and application of an on-line liquid chromatography/mass spectrometry (LC/MS) method using hydrophilic interaction chromatography (HILIC) coupled to negative ion mode electrospray ionisation ion trap mass spectrometry (ESI-MS) for the analysis of highly polar carbohydrate-related metabolites commonly found in plants, ranging from reducing and non-reducing sugars and sugar alcohols to sugar phosphates. Using this method, separation and detection of a mixture of eight authentic standard compounds containing glucose (Glc), sucrose (Suc), raffinose, verbascose, mannitol, maltitol, glucose-6-phosphate (Glc6P) and trehalose-6-phosphate (Tre6P) were achieved in less than 15 min. The method is rapid, robust, selective, and sensitive, with limits of detection (LODs) ranging from 0.2 microM obtained for neutral sugars, to 1.0 microM obtained for sugar alcohols, and 2.0 microM obtained for negatively charged sugar phosphates. We have studied the negative ion collision-induced dissociation (CID) fragmentation behaviour of the non-reducing raffinose family oligosaccharides (RFOs) raffinose, stachyose, and verbascose. Mainly Bi and Ci glycosidic and Ai cross-ring structurally informative cleavages are observed. We have applied this HILIC/ESI-MS method for the analysis of Arabidopsis thaliana wild-type Columbia-0 (Col-0) and its starchless phosphoglucomutase mutant (pgm1) leaf extracts. The method was used to quantify Glc, Suc, raffinose, and Glc6P in A. thaliana extracts. Data obtained using this HILIC/ESI-MS method were compared with those obtained using a comparable porous graphitic carbon-based LC/ESI-MS method.  相似文献   

6.
《Tetrahedron》1988,44(11):3093-3106
Various D-furanose monosaccharides were synthesized as possible inhibitors of the gluconeogenic enzyme fructose 1,6-bisphosphatase. These included sulfamate, phosphoramidate, and epoxy analogues of the natural substrate, fructose 1,6-diphosphate (1), and arabinose and ribose analogues of a natural inhibitor, fructose 2,6-diphosphate (2). NMR studies were conducted to establish the stereochemistry of phosphate displacenent at C1 in the synthesis of arabinose 1-phosphate derivatives. β-Ribose 1,5-diphosphate (35b) was prepared with >95% stereoselectivity.  相似文献   

7.
The mouse liver fructose 6-phosphate, 2-kinase was purified by ultracentrifugation, polyethylene glycol precipitation, and subsequently by chromatography on DEAE-Sephadex, Blue-Sepharose and phasphocellulose columnS. Gel filtration and SDS polyacrylamide electrophorcsis showed that the enzyme has a molecular weight of 110,000 with two identical subunits. Mg~(2+) is essential for its activity. The activation of the enzyme by Mg~(2+) showed a positive cooperativity. The substrate saturation curve for fructose 6-phosphate was sigmoidal and for ATP was hyperbolic. The K_m's for ATP increased with decrease in concentrations of fructose 6-phosphate indicating that the sequence for the substrates binding was in an ordered mechanism with respect to fructose 6-phosphate prior to ATP. An ionizable residue at the active site with pKa 9.5 was essential for the ATP binding and the pKa shifted to 9.8 after the binding of ATP.  相似文献   

8.
A sequential method for determination of glucose and fructose involving the use of enzymes (hexokinase and glucose-6-phosphate dehydrogenase) immobilized on controlled-pore glass is proposed. The flow is selected so as to determine glucose or both sugars by fluorimetric determination of the NADH formed. The method is applied to the determination of these compounds in fruit juices, yoghourt and dessert powder with good results.  相似文献   

9.
Biosynthesis of flavocoenzymes   总被引:1,自引:0,他引:1  
The biosynthesis of one riboflavin molecule requires one molecule of GTP and two molecules of ribulose 5-phosphate. The imidazole ring of GTP is hydrolytically opened, yielding a 2,5-diaminopyrimidine that is converted to 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione by a sequence of deamination, side chain reduction, and dephosphorylation. Condensation of 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione with 3,4-dihydroxy-2-butanone 4-phosphate obtained from ribulose 5-phosphate affords 6,7-dimethyl-8-ribityllumazine. Dismutation of the lumazine derivative yields riboflavin and 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione, which is recycled in the biosynthetic pathway. The enzymes of the riboflavin pathway are potential targets for antibacterial agents.  相似文献   

10.
A variety of P-stereogenic organophosphorus compounds can be readily prepared by stereoretentive addition. The PMe3-catalyzed addition of optically active (?)MenthylO(Ph)P(O)H compounds to electron deficient alkenes occur stereospecifically, to produce the corresponding P-stereogenic adducts in high yields. By simply removing the volatiles under vacuum, spectroscopically pure products can be obtained. The present method provides a salt-free clean process for the preparation of P-chiral organophosphorus compounds.  相似文献   

11.
A fast, simple, and accurate method, using only standard laboratory equipment, was developed for the quantification of glucose, fructose, sucrose, and inulin/oligofructose in different food matrixes. Samples were extracted using boiling water and hydrolyzed with sucrase and fructanase. Sugars were determined in the initial extract and in both hydrolysates using an enzymatic, spectrophotometric kit for glucose and fructose determination with hexokinase, glucose-6-phosphate dehydrogenase, and phosphoglucose isomerase. Calculations of sucrose and inulin/oligofructose were based only on fructose measurement. Glucose results of the hydrolysates were not used for inulin/oligofructose calculations because of possible interference. Released glucose by the hydrolysis of maltose or by possible partial hydrolysis of other compounds like maltodextrines, starch, lactose, or maltitol could interfere in the measurement of the sucrase and the fructanase hydrolysates. To validate the method, a wide range of different food matrixes and different amounts of inulin/oligofructose (1-54%) were analyzed. Mean recovery +/- relative standard deviation (RSD) for inulin or oligofructose was 96.0 +/- 5.3%. The RSDr for inulin/oligofructose measured on 35 food samples, analyzed in duplicate, was 5.9%. Accuracy and precision of the method were less for samples with large concentrations of sucrose, maltose, maltodextrines, or starch (ratio to inulin/oligofructose >4 to 1). Precision and accuracy were comparable with those of the ion exchange chromatographic method AOAC 997.08 and the enzymatic, spectrophotometric method AOAC 999.03. In contrast to 999.03, this method allows the accurate quantification of both GFn and Fn forms.  相似文献   

12.
We developed and validated a gas chromatographic/ion trap mass spectrometric method for the determination of levoglucosan and the related monosaccharide anhydrides, mannosan, galactosan and 1,6-anhydro-beta-D-glucofuranose in urban atmospheric aerosols collected on quartz fiber filters. The method is based on extraction with dichloromethane-methanol (80 : 20, v/v), trimethylsilylation, multiple reaction monitoring in the tandem mass spectrometric mode using the ion at m/z 217, and the use of an internal standard calibration procedure with the structurally related compound methyl beta-L-arabinopyranoside. In addition, the method allows the quantification of other saccharidic compounds, arabitol, mannitol, glucose, fructose, inositol and sucrose, which were found to be important in summer aerosols. The recovery of levoglucosan was estimated by spiking blank filters and was better than 90%. The precision evaluated by analyzing parts of the same filters was about 2% for the monosaccharide anhydrides and 7% for the other saccharidic compounds in the case of a winter aerosol sample, and the corresponding values for a summer aerosol sample were 5% and 8%. The method was applied to urban PM(10) (particulate matter of <10 microm aerodynamic diameter) aerosols collected at Ghent, Belgium, during a 2000-2001 winter and a 2001 summer episode and revealed interesting seasonal variations. While monosaccharide anhydrides were relatively more important during the winter season owing to wood burning, the other saccharidic compounds were more prevalent during the summer season, with some of them, if not all, originating from the vegetation.  相似文献   

13.
2,5-Anhydroglucitol and 2,5-anhydromannitol and their 6-phosphate and 1,6-diphosphate derivatives are cyclic analogues of the alpha and beta anomers of D-fructofuranose, D-fructofuranose-6-phosphate, and D-fructofuranose-1,6-diphosphate. They were synthesized from protected D-mannose or D-glucose. The synthetic method was developed with emphasis on selective (2)H labeling of these compounds, as a model for (3)H incorporation, which will be used for further biochemical studies. A key cyclization step, based on a benzyl ether nucleophilic attack on an activated alcohol, constructed the ring system. The stereochemistry at C(2) (alpha/beta anomers) and at C(5) (D sugar) was controlled by selective epimerizations. Mono- and diphosphate analogues were obtained from the same intermediate by changing the sequence of deprotection and phosphorylation steps.  相似文献   

14.
The use of capillary electrophoresis and indirect detection to quantify reaction products of in-capillary enzyme-catalyzed microreactions is described. Migrating in a capillary under conditions of electrophoresis, plugs of enzyme and substrate are injected and allowed to react. Capillary electrophoresis is subsequently used to measure the extent of reaction. This technique is demonstrated using two model systems: the conversion of fructose-1,6-bisphosphate to dihydroxyacetone phosphate and glyceraldehyde-3-phosphate by fructose-biphosphate aldolase (ALD, EC 4.1.2.13), and the conversion of fructose-1,6-bisphosphate to fructose-6-phosphate by fructose-1,6-bisphospatase (FBPase, EC 3.1.3.11). These procedures expand the use of the capillary as a microreactor and offer a new approach to analyzing enzyme-mediated reactions.  相似文献   

15.
In this paper, we report a double-receptor sandwich type fluorescence sensing method for the determination of fructose bisphosphates (FBPs) using fructose 1,6-bisphosphate (F-1,6-BP) as a model analyte based on uranyl–salophen complexes. The solid phase receptor is an immobilized uranyl–salophen (IUS) complex which is bound on the surface of glass slides by covalent bonds. The labeled receptor is another uranyl–salophen complex containing a fluorescence group, or uranyl–salophen–fluorescein (USF). In the procedure of determining F-1,6-BP in sample solution, F-1,6-BP is first adsorbed on the surface of the glass slide through the coordination reaction of F-1,6-BP with IUS. It then binds USF through another coordination reaction to form a sandwich-type structure of IUS-F-1,6-BP-USF. The amount of F-1,6-BP is detected by the determination of the fluorescence intensity of IUS-F-1,6-BP-USF bound on the glass slide. Under optimal conditions, the linear range for the detection of F-1,6-BP is 0.05–5.0 nmol mL−1 with a detection limit of 0.027 nmol mL−1. The proposed method has been successfully applied for the determination of F-1,6-BP in real samples with satisfactory results.  相似文献   

16.
This work reports the development and optimisation of a negative ion mode on-line LC-ESI-MS/MS method for the sensitive targeted analysis of the key glycolytic intermediates, sugars and sugar phosphates from plants, using a porous graphitic carbon (PGC) stationary phase and an MS compatible mobile phase. Using this newly developed method, separation and detection of a solution of standard compounds is achieved in less than 20min. Target metabolite compounds were identified in plant extracts from their characteristic retention times, and product ion spectra. This on-line PGC-ESI-MS/MS method shows good linearity over the concentration range 0-100microM, selectivity, short analysis time, and limits of detection of 0.1microM for disaccharides trehalose (Tre), sucrose (Suc), and maltose, and 1.5microM for hexose phosphates fructose-6-phosphate (Fru6P), glucose-1-phosphate (Glc1P), and glucose-6-phosphate (Glc6P), and phosphoenolpyruvate (PEP). This paper describes details of our method and its application to the simultaneous quantitative analysis of soluble sugars and sugar phosphates from Arabidopsis thaliana tissues. We have demonstrated the utility of our method for the analysis of biological samples by applying it to the simultaneous quantitation of changes in soluble sugars and sugar phosphates in A. thaliana Columbia-0 (Col-0) and its starchless phosphoglucomutase (pgm) mutant over a 12-h light/12-h dark growth cycle.  相似文献   

17.
The mass spectra of trimethylsilyl (TMS) derivatives of possible hydroxylated pyrolysis products of glucose and cellulose were recorded by gas chromatography/mass spectrometry (GC/MS) analyses of TMS derivatives of 2-hydroxymethylfuran, 2-hydroxy-1-methyl-1-cyclopenten-3-one, 5-(hydroxymethyl)-2-furaldehyde, 5-methyl-2-furoic acid, 4-hydroxy-6-methyl-(2H)-pyran-2-one, 2-methyl-3-hydroxy-(4H)-pyran-4-one (maltol) and 1,6-anhydro-beta-D-glucopyranose (levoglucosan, LG). Also, 2-O-TMS-1,6-anhydro-beta-D-glucopyranose, 4-O-TMS-1,6-anhydro-beta-D-glucopyranose and 2,4-bis-O-TMS-1,6-anhydro-beta-D-glucopyranose were identified from the interpretation of electron impact and chemical ionisation mass spectra of products obtained from partially silylated levoglucosan solutions, together with information from the known relative reactivities of OH groups of anhydrosugars. A peak at m/z 116 was found to be characteristic of the mass spectra of partially silylated anhydrosugars, and is absent from the mass spectra of the persilylated species. Pyrolysis/GC/MS of cellulose in the presence of hexamethyldisilazane afforded principally the 2- and 4-TMS ethers and the 2,4-bis-TMS ether of LG, whereas the 5-TMS-oxymethyl-2-furaldehyde was a prominent pyrolysis/silylation product of glucose. The mass spectra of other relevant pyrolysis/silylation products are presented.  相似文献   

18.
Zymomonas mobilis is the only known microorganism that utilizes the Entner–Doudoroff (ED) pathway anaerobically. In this work, we investigated whether the overexpression of a phosphofructokinase (PFK), the only missing Embden–Meyerhof–Parnas (EMP) pathway enzyme, could establish the pathway in this organism. Introduction of a pyrophosphate-dependent PFK, along with co-expression of homologous fructose-1,6-bisphosphate aldolase and triosephosphate isomerase, did not result in an EMP flux to any appreciable level. However, the metabolism of glucose was impacted significantly. Eight percent of glucose was metabolized to form a new metabolite, dihydroxyacetone. Reducing flux through the ED pathway by as much as 40 % through antisense of a key enzyme, ED aldolase, did not result in a fully functional EMP pathway, suggesting that the ED pathway, especially the lower arm, downstream from glyceraldehyde-3-phosphate, is very rigid, possibly due to redox balance.  相似文献   

19.
Attachment of anions to sorbitol and fructose has been shown to enhance sensitivity in both electrospray ionization (ESI) and atmospheric-pressure chemical ionization (APCI) mass spectrometry. The post-column addition of CHCl3 produced Cl-adducts of sorbitol and fructose but their signals were suppressed due to the elevated background. Different chlorinated compounds and different additive methods were systematically investigated to form more abundant Cl-adduct precursor ions and deprotonated product ions. The major causes of the high background were explored and effective methods were developed to improve the signal-to-noise ratios and reproducibility. The compositions of mobile phase, percentages of organic modifiers (MeCN, MeOH and water), columns, oven temperature, flow rates and different gradients were investigated to separate sorbitol from fructose along with their isomers including glucose, galactose, mannose, sorbose, mannitol, and dulcitol. The optimized separation was achieved on a Luna 5 mu NH2 100A column (150 x 4.6 mm) using a mobile phase containing MeCN with 0.1% of CH2Cl2 and 50% MeOH in water at a flow rate of 800 microL/min and an oven temperature of 40 degrees C using a gradient liquid chromatography (LC) system. Human nerve tissue samples were extracted by protein precipitation followed by mixed-mode solid-phase extraction. The LC/ESI-MS/MS method produced higher peak intensities than LC/APCI-MS/MS. However, there were matrix effects from extracted tissues in LC/ESI-MS/MS but not in LC/APCI-MS/MS. Consequently, APCI proved to be the more effective method of ionization. Then the LC/APCI-MS/MS method was fully validated and successfully applied to analysis of clinical samples. The concentrations of endogenous sorbitol and fructose were determined using calibration curves employing sorbitol-13C6 and fructose-13C6 as surrogate analytes. The method has provided excellent intra- and inter-assay precision and accuracy with linear ranges of 0.2-80 ng/mg for sorbitol and 1-400 ng/mg for fructose in human nerve tissues.  相似文献   

20.
In this study, a rapid and highly sensitive ultra high performance liquid chromatography with triple quadrupole mass spectrometry method with the mobile phase of acetonitrile and 0.1% aqueous formic acid was established and successfully applied to comparatively analyze main active components after their compatibility. Besides, the effects of Scutellariae Radix, Coptidis Rhizoma and combined extracts on type 2 diabetic rats induced by high‐fat diet along with low dose of streptozocin were investigated. Under the optimized chromatographic conditions, good separation of seven target components was achieved within 12 min. All calibration curves exhibited good linearity (R2 ≥ 0.999). The relative standard deviation of precision, repeatability and stability varied from 0.69 to 2.23, 0.98 to 2.56, and 0.92 to 2.57%, respectively. The recovery ranged from 91.11 to 105.35%. The contents of seven active components were notably reduced after compatibility; however, the hypoglycemic effect of combined extracts was stronger than single drug by decreasing the activities of fructose‐1,6‐bisphosphatase, glucose 6‐phosphatase, phosphoenolpyruvate carboxykinase and increasing the activities of glucokinase, phosphofructokinase, pyruvate kinase. Accordingly, the established analytical method was accurate and sensitive enough for quantitative evaluation of seven investigated compounds. Moreover, the combined extract had definite effects on type 2 diabetes through multiple components against multiple targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号