首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reactions of bicarbonate ion with a series of binuclear Cu(II) complexes in buffered aqueous solution have been studied, and effective binding constants for bicarbonate have been determined at pH 7.4 for the complexes [Cu2(taec)]4+ (taec = N,N',N',N'-tetrakis(2-aminoethyl)-1,4,8,11-tetraazacyclotetradecane) and [Cu2(tpmc)(OH)]3+ (tpmc = N, N',N',N'-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane). [Cu2(o-xyl-DMC2)]4+ (o-xyl-DMC2 = alpha,alpha'-bis(5,7-dimethyl-1,4,8,11-tetraazacyclotetradecan-6-yl)-o-xylene) did not react with bicarbonate ion in an aqueous solution buffered at this pH. The complexes were reduced by controlled-potential electrolysis, and the stability of the Cu(I) derivatives in aqueous solution and their affinity for bicarbonate/carbonate ion were investigated. On the basis of these fundamental studies, [Cu2(tpmc)(mu-OH)]3+ has been identified as an air-stable, water-soluble carrier for the capture and concentration of CO2 by electrochemically modulated complexation. The carrier binds to the carbonate ion strongly in its oxidized, Cu(II) form and releases the ion rapidly when reduced to the Cu(I) complex. In small-scale electrochemical pumping experiments designed to demonstrate the feasibility of this approach, CO2 has been pumped from an initial 10% CO2/N2 mixture up to a final concentration of 75%.  相似文献   

2.
Reaction of the complex [Ni(rac-CTH)](2+) (rac-CTH = rac-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane) with [Fe(CN)(6)](3-) leads to a novel cyano-bridged Ni(3)Fe(2) complex, [[Ni(rac-CTH)](3)[Fe(CN)(6)](2)](4). The structure consists of an alternating arrangement of [Fe(CN)(6)Ni(rac-CTH)](2) squares and trans-planar [Ni(rac-CTH)](2+) units bridged by cyanide groups to give a neutral 1D chain running along the a axis. Magnetic measurements reveal the occurrence of ferromagnetic coupling between Fe(III) and Ni(II) ions and 3D magnetic ordering at 3 K due to interchain interactions. Canting of the moments is inferred from the low value of the magnetization of the saturation below T(c).  相似文献   

3.
The reaction of a mixture of 1 equiv of PhPH(2) and 2 equiv of PhNHSiMe(2)CH(2)Cl with 4 equiv of Bu(n)Li followed by the addition of THF generates the lithiated ligand precursor [NPN]Li(2).(THF)(2) (where [NPN] = PhP(CH(2)SiMe(2)NPh)(2)). The reaction of [NPN]Li(2).(THF)(2) with TaMe(3)Cl(2) produces [NPN]TaMe(3), which reacts under H(2) to yield the diamagnetic dinuclear Ta(IV) tetrahydride ([NPN]Ta)(2)(mu-H)(4). This hydride reacts with N(2) with the loss of H(2) to produce ([NPN]Ta(mu-H))(2)(mu-eta(1):eta(2)-N(2)), which was characterized both in solution and in the solid state, and contains strongly activated N(2) bound in the unprecedented side-on end-on dinuclear bonding mode. A density functional theory calculation on the model complex [(H(3)P)(H(2)N)(2)Ta(mu-H)](2)(mu-eta(1):eta(2)-N(2)) provides insight into the molecular orbital interactions involved in the side-on end-on bonding mode of dinitrogen. The reaction of ([NPN]Ta(mu-H))(2)(mu-eta(1):eta(2)-N(2)) with propene generates the end-on bound dinitrogen complex ([NPN]Ta(CH(2)CH(2)CH(3)))(2)(mu-eta(1):eta(1)-N(2)), and the reaction of [NPN]Li(2).(THF)(2) with NbCl(3)(DME) generates the end-on bound dinitrogen complex ([NPN]NbCl)(2)(mu-eta(1):eta(1)-N(2)). These two end-on bound dinitrogen complexes provide evidence that the bridging hydride ligands are responsible for the unusual bonding mode of dinitrogen in ([NPN]Ta(mu-H))(2)(mu-eta(1):eta(2)-N(2)). The dinitrogen moiety in the side-on end-on mode is amenable to functionalization; the reaction of ([NPN]Ta(mu-H))(2)(mu-eta(1):eta(2)-N(2)) with PhCH(2)Br results in C-N bond formation to yield [NPN]Ta(mu-eta(1):eta(2)-N(2)CH(2)Ph)(mu-H)(2)TaBr[NPN]. Nitrogen-15 NMR spectral data are provided for all the tantalum-dinitrogen complexes and derivatives described.  相似文献   

4.
The one-step reaction of [Cu(en)(2)](2+) (en = 1,2-diaminoethane) with formaldehyde, ethyl 2-pyridyl acetate, and base produces a mixture of [Cu(s-pypymac)](2+) and [Cu(a-pypymac)](2+) (s-pypymac = syn-6,13-bis(2-pyridinyl)-1,4,8,11-tetraazacyclotetradecane, a-pypymac = anti-6,13-bis(2-pyridinyl)-1,4,8,11-tetraazacyclotetradecane; syn-to-anti ratio approximately 1:9) in low yield (6%). Ion exchange chromatography is used for isomer separation, and the two isomers of the metal-free ligand are obtained by reduction of the copper(II) complexes and subsequent ion exchange chromatography. Crystal structure analyses of the metal-free a-pypymac ligand, of two isomeric copper(II) compounds of a-pypymac and one of s-pypymac, and of the cobalt(III) complexes of a- and s-pypymac and nickel(II), as well as zinc(II) complexes of a-pypymac, are reported and discussed on the basis of the expectations from force field calculations and from published experimental data of the transition metal compounds of the bis-pendant amine derivative diammac.  相似文献   

5.
Cyclic voltammetry and controlled-potential electrolysis have been employed to investigate and characterize the reductive intramolecular cyclization of ethyl 2-bromo-3-(3',4'-dimethoxyphenyl)-3-(propargyloxy)propanoate (1) promoted by (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane)nickel(I), [Ni(tmc)](+), electrogenerated at glassy carbon cathodes in dimethylformamide containing tetraalkylammonium salts. Cyclic voltammograms for reduction of [Ni(tmc)](2+) in the presence of 1 reveal that [Ni(tmc)](+) catalytically reduces 1 at potentials more positive than those required for direct reduction of 1. During controlled-potential electrolyses of solutions containing [Ni(tmc)](2+) and 1, catalytic reduction of the latter proceeds via one-electron cleavage of the carbon-bromine bond to form a radical intermediate that undergoes cyclization to afford 2-(3',4'-dimethoxyphenyl)-3-(ethoxycarbonyl)-4-methylenetetrahydrofuran (2). In the presence of a base (either electrogenerated or deliberately added as potassium tert-butoxide), 2 rearranges to give 2-(3',4'-dimethoxyphenyl)-3-(ethoxycarbonyl)-4-methyl-2,5-dihydrofuran (3). A mechanistic scheme is proposed to explain the results obtained by means of cyclic voltammetry and controlled-potential electrolysis.  相似文献   

6.
The near-diffusion-controlled reactions of hydroxyl radical, hydrated electron, and hydrogen atom with platinum macrocyclic complex ions in aqueous media have been studied using pulse radiolysis in conjunction with UV-visible absorption and conductivity detection. The hydrated electron and hydrogen atom react with trans-[Pt(cyclam)(Cl)(2)](2+) where cyclam is 1,4,8,11-tetraazacyclotetradecane to yield platinum(III) transients that exhibit intense absorption peaks in the 280-300 nm region; however in the case of the H-atom, the reaction involves a competition between chloride abstraction and a minor process, suggested to be attack on the organic ligand. The platinum(III) products are kinetically labile toward loss of chloro ligands, but these reactions are reversible in the presence of added KCl. The reactions of hydroxyl radical with [Pt(cyclam)](2+) and with [Pt(tmc)](2+), where tmc is 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane, lead to platinum(III) intermediates absorbing in the 250-300 nm region. Depending on the presence or absence of added KCl and on the pH, the platinum(III) cyclam systems can react to form a product(s) exhibiting absorption peaks near 330 and 455 nm, and this species is proposed to be a long-lived amidoplatinum(III) complex. In support of this proposal is the observation that the tmc system does not give rise to a similar visible-absorbing product. The interrelations of the cyclam-based transients through acid-base, chloro-substitution and water-elimination processes are discussed.  相似文献   

7.
The complex Ni(II)(1,8,-di-2-propenyl-1,4,8,11-tetraazacyclotetradecane)(2+), (NiL(1))(2+), was synthesized. X-ray crystallography demonstrates that the complex obtained is the trans-III isomer. The allylic substituents shift the redox couples (NiL(1))(3+/2+) and (NiL(1))(2+/+) anodically relative to the corresponding couples for Ni(II)(1,4,8,11-tetraazacyclotetradecane)(2+), (NiL(2))(2+), as expected. Surprisingly, the lifetime of (NiL(1))(+) in neutral aqueous solutions is shorter than that of (NiL(2))(+). Pulse radiolysis experiments reveal that the allylic substituents are reduced by the central Ni(I) ion. The first step in this reduction is a general acid catalyzed process. The results suggest that this step involves schematically the reaction Ni(I)[bond]NCH(2)CH[double bond]CH(2)(+) + H(+) --> Ni(III)[bond]NCH2CH2CH(2)(2+). The latter transient decomposes slowly with a half-life time of several minutes. Preliminary results support the suggestion that (NiL(2))(+), or other Ni(I)L complexes of this family, might reduce many alkenes present in the solution.  相似文献   

8.
Electrospray ionization of an aqueous solution of nickel(II) sulfate provides direct experimental evidence for the formation of triple ions of the type [Ni(2)(SO(4))(H(2)O)(n)](2+) and [Ni(SO(4))(2)](2-), whose existence in aqueous solution has previously been proposed based on relaxation spectroscopy [Chen et al. J. Sol. Chem. 2005, 34, 1045]. Formally, these triple ions are formed by aggregation of the solvated ions Ni(2+) and SO(4)(2-), respectively, with the neutral ion pair NiSO(4). In addition, also higher adducts are observed, e.g. the "pentuple ions" [Ni(3)(SO(4))(2)(H(2)O)(n)](2+) (n = 7-9) and [Ni(2)(SO(4))(3)](2-), of which the dicationic is extensively hydrated, whereas the anionic is not. The structures of the dinuclear nickel clusters are derived from ab initio calculations and their infrared spectra are compared with experimental data obtained for the gaseous ions [Ni(2)SO(4)(H(2)O)(5)](2+) and [Ni(2)(SO(4))(3)](2-), respectively. The calculations show that the structures are crucially controlled by the degree of solvation of nickel ion. Explicit consideration of solvating water molecules within the first coordination sphere suggest that the dicationic triple ion [Ni(2)SO(4)](aq)(2+) is bent and thus bears a permanent dipole moment, whereas the [Ni(SO(4))(2)](aq)(2-) dianion tends to be quasi-linear. The experimental and theoretical data for the gaseous ions thus support the elegant, but indirect, deductions previously made based on solution-phase studies.  相似文献   

9.
The use of 1,3,5-triaminocyclohexane (tach) as a capping ligand in generating metal-cyanide cage clusters with accessible cavities is demonstrated. The precursor complexes [(tach)M(CN)(3)] (M = Cr, Fe, Co) are synthesized by methods similar to those employed in preparing the analogous 1,4,7-triazacyclononane (tacn) complexes. Along with [(tach)Fe(CN)(3)](1)(-), the latter two species are found to adopt low-spin electron configurations. Assembly reactions between [(tach)M(CN)(3)] (M = Fe, Co) and [M'(H(2)O)(6)](2+) (M' = Ni, Co) in aqueous solution afford the clusters [(tach)(4)(H(2)O)(12)Ni(4)Co(4)(CN)(12)](8+), [(tach)(4)(H(2)O)(12)Co(8)(CN)(12)](8+), and [(tach)(4)(H(2)O)(12)Ni(4)Fe(4)(CN)(12)](8+), each possessing a cubic arrangement of eight metal ions linked through edge-spanning cyanide bridges. This geometry is stabilized by hydrogen-bonding interactions between tach and water ligands through an intervening solvate water molecule or bromide counteranion. The magnetic behavior of the Ni(4)Fe(4) cluster indicates weak ferromagnetic coupling (J = 5.5 cm(-)(1)) between the Ni(II) and Fe(III) centers, leading to an S = 6 ground state. Solutions containing [(tach)Fe(CN)(3)] and a large excess of [Ni(H(2)O)(6)](2+) instead yield a trigonal pyramidal [(tach)(H(2)O)(15)Ni(3)Fe(CN)(3)](6+) cluster, in which even weaker ferromagnetic coupling (J = 1.2 cm(-)(1)) gives rise to an S = (7)/(2) ground state. Paralleling reactions previously performed with [(Me(3)tacn)Cr(CN)(3)], [(tach)Cr(CN)(3)] reacts with [Ni(H(2)O)(6)](2+) in aqueous solution to produce [(tach)(8)Cr(8)Ni(6)(CN)(24)](12+), featuring a structure based on a cube of Cr(III) ions with each face centered by a square planar [Ni(CN)(4)](2)(-) unit. The metal-cyanide cage differs somewhat from that of the analogous Me(3)tacn-ligated cluster, however, in that it is distorted via compression along a body diagonal of the cube. Additionally, the compact tach capping ligands do not hinder access to the sizable interior cavity of the molecule, permitting host-guest chemistry. Mass spectrometry experiments indicate a 1:1 association of the intact cluster with tetrahydrofuran (THF) in aqueous solution, and a crystal structure shows the THF molecule to be suspended in the middle of the cluster cavity. Addition of THF to an aqueous solution containing [(tach)Co(CN)(3)] and [Cu(H(2)O)(6)](2+) templates the formation of a closely related cluster, [(tach)(8)(H(2)O)(6)Cu(6)Co(8)(CN)(24) superset THF](12+), in which paramagnetic Cu(II) ions with square pyramidal coordination are situated on the face-centering sites. Reactions intended to produce the cubic [(tach)(4)(H(2)O)(12)Co(8)(CN)(12)](8+) cluster frequently led to an isomeric two-dimensional framework, [(tach)(H(2)O)(3)Co(2)(CN)(3)](2+), exhibiting mer rather than fac stereochemistry at the [Co(H(2)O)(3)](2+) subunits. Attempts to assemble larger edge-bridged cubic clusters by reacting [(tach)Cr(CN)(3)] with [Ni(cyclam)](2+) (cyclam = 1,4,8,11-tetraazacyclotetradecane) complexes instead generated extended one- or two-dimensional solids. The magnetic properties of one of these solids, two-dimensional [(tach)(2)(cyclam)(3)Ni(3)Cr(2)(CN)(6)]I(2), suggest metamagnetic behavior, with ferromagnetic intralayer coupling and weak antiferromagnetic interactions between layers.  相似文献   

10.
Rare examples of (mu-eta2:eta2-disulfido)dicopper complexes have been prepared from Cu(I) and Cu(II) complexes of beta-diketiminate and anilido-imine supporting ligands. A novel byproduct derived from sulfur functionalization of the methine position of a beta-diketiminate ligand was identified. DFT calculations on [(LCu)2X2] (L = beta-diketiminate, X = O or S) complexes rationalize the absence of a bis(mu-sulfido)dicopper isomer, [Cu2(mu-S)2](2+), in the synthetic reactions, yet predict that a [Cu2(mu-S)2](0) core is a stable product of 2-electron reduction of the [Cu2(mu-eta2:eta2-S2)](2+) unit. Exchange of the disulfido ligand was discovered upon reaction of a (mu-eta2:eta2-disulfido)dicopper complex with a Cu(I) reagent.  相似文献   

11.
The pentadentate ligand 14-oxa-1,4,8,11-tetraazabicyclo[9.5.3]nonadecane (L1) has been synthesized by the high dilution cyclization of 1-oxa-4,8-diazacyclododecane ([10]aneN(2)O) (1) with 1,3-bis(alpha-chloroacetamido)propane (2) and subsequent reduction of the diamide intermediate. The structure [Ni(L1)(ClO(4))](ClO(4)) (P2(1)/c (no. 14), a = 8.608(3), b = 16.618(3), c = 14.924(4) A, beta = 91.53(3) degrees converged at R = 0.050 (R(w) = 0.046) for 307 parameters using 2702 reflections with I > 2sigma(I). For the nickel(II) complex of the (monodeprotonated) precursor diamide ligand 14-oxa-1,4,8,11-tetraazabicyclo[9.5.3]nonadecane-3,9-dione (H(2)L2), [Ni(HL2)](ClO(4)) (Pbca (no. 61), a = 15.1590(3), b = 13.235(2), c = 18.0195(6) A), the structure converged at R = 0.045 (R(w) = 0.038) for 265 parameters using 1703 reflections with I > 3sigma(I). In the reduced system, the cyclam-based ligand adopts a trans-III configuration. The [Ni(L1)(ClO(4))](2+) ion is pseudooctahedral with the Ni-O(ether) 2.094(3) A distance shorter than the Ni-O(perchlorate) 2.252(4) A. The nickel(II) and nickel(III) complexes are six-coordinate in solution. Oxidation of [Ni(L1)(OH(2))](2+) with K(2)S(2)O(8) in aqueous media yielded an axial d(7) Ni(III) species (g( perpendicular) = 2.159 and g( perpendicular) = 2.024 at 77 K). The [Ni(L1)(solv)](2+) ion in CH(3)CN showed two redox waves, Ni(II/I) (an irreversible cathodic peak, E(p,c) = -1.53 V) and Ni(III/II) (E(1/2) = 0.85 V (reversible)) vs Ag/Ag(+). The complex [Ni(HL2)](ClO(4)) displays square-planar geometry with monodeprotonation of the ligand. The ether oxygen is not coordinated. Ni-O(3) = 2.651(6) A and Ni-O(3a) = 2.451(12) A, respectively. The Ni(III/II) oxidation at E(1/2) = 0.24 V (quasi-reversible) vs Ag/Ag(+) is considerably lower than the saturated system. The kinetics of Cl(-) substitution at [Ni(L1)(solv)](3+) are pH dependent. Detachment of the ether oxygen atom is proposed, with insertion of a protonated water molecule which deprotonates at a pK(a) more acidic than in the corresponding cyclam complex. Mechanistic implications are discussed.  相似文献   

12.
Reactions of the precursors [Ni(macrocyclic ligand)](2+) with [W(CN)(8)](3-) afford two octacyanotungstate-based assemblies, (H(2)L(1))(0.5)[Ni(L(1))][W(CN)(8)]·2DMF·H(2)O (L(1) = 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane) (1) and [Ni(L(2))](3)[W(CN)(8)](2)·4H(2)O (L(2) = 3,10-dipropyl-1,3,5,8,10,12-hexaazacyclotetradecane) (2). Single crystal X-ray diffraction shows that 1 consists of anionic one-dimensional (1D) linear chains, while 2 is built of 2D graphite-like layers with (6, 3) topology. Magnetic studies reveal that both complexes exhibit metamagnetic behavior from the spin-canted antiferromagnet to the ferromagnet induced by field.  相似文献   

13.
New complexes of Rh(III), Ru(II), and Pd(II) with N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (tpen) and its analogues have been prepared. The reaction of RhCl(3).nH(2)O with tpen is slow and allows one to isolate the products of three consecutive substitution steps: Rh(2)Cl(6)(tpen) (1), cis-[RhCl(2)(eta(4)-tpen)](+) (2), and [RhCl(eta(5)-tpen)](2+) (3). In acetonitrile the reaction stops at the step of the formation of cis-[RhCl(2)(eta(4)-tpen)](+), whereas [RhCl(eta(5)-tpen)](2+) is the final product of the further reaction in ethanol. Fully chelated [Rh(tpen)](3+) could not be obtained. Bis(acetylacetonato)palladium(II), Pd(acac)(2), reacts with tpen and its analogues, N,N,N',N'-tetrakis(2-pyridylmethyl)-1,3-propanediamine (tptn) and N,N,N',N'-tetrakis(2-pyridylmethyl)-(R)-1,2-propylenediamine (R-tppn), to give [Pd(eta(4)-tpen)](2+) (4), [Pd(eta(4)-tppn)](2+) (5), and [Pd(eta(4)-tptn)](2+) (6), respectively. Two pyridyl arms remain uncoordinated in these cases. The formation of unstable Pd(III) complexes from these Pd(II) complexes in solution was suggested on the basis of electrochemical measurements. Ruthenium(III) trichloride, RuCl(3).nH(2)O, is reduced to give a Ru(II) complex with fully coordinated tpen, [Ru(tpen)](2+) (7). The same product was obtained in a more straightforward reaction of Ru(II)Cl(2)(dimethyl sulfoxide)(4) with tpen. Electrochemical studies showed a quasi-reversible [Ru(tpen)](2+/3+) couple for [7](ClO(4))(2) (E(1/2) = 1.05 V vs Ag/AgCl). Crystal structures of [2](PF(6)).2CH(3)CN, [3](PF(6))(2).CH(3)CN, [6](ClO(4))(2), and [7](ClO(4))(2).0.5H(2)O were determined. Crystal data: [2](PF(6)).2CH(3)CN, monoclinic, C2, a = 16.974(4) A, b = 8.064(3) A, c = 13.247(3) A, beta = 106.37(2) degrees, V = 1739.9(8) A(3), Z = 2; [3](PF(6))(2).CH(3)CN, triclinic, P1, a = 11.430(1) A, b = 19.234(3) A, c = 8.101(1) A, alpha = 99.43(1) degrees, beta = 93.89(1) degrees, gamma = 80.10(1) degrees, V = 1729.3(4) A(3), Z = 2; [6](ClO(4))(2), orthorhombic, Pnna, a = 8.147(1) A, b = 25.57(1) A, c = 14.770(4) A, V = 3076(3) A(3), Z = 4; [7](ClO(4))(2).0.5H(2)O, monoclinic, P2(1)/c, a = 10.046(7) A, b = 19.049(2) A, c = 15.696(3) A, beta = 101.46(3) degrees, V = 2943(2) A(3), Z = 4.  相似文献   

14.

A new terephthalato-bridged binuclear nickel(II) complex with a tetraazamacrocyclic compound as the terminal ligand, [Ni 2 (cth) 2 (µ-TPHA)](ClO 4 ) 2 (1) [cth= rac -5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane] has been synthesized and characterized. According to X-ray crystallographic studies on the solvated species 1·2CH 3 OH, each Ni(II) ion lies in a distorted octahedral environment, and the terephthalato ligand bridges two Ni(II) ions in a bis bidentate fashion. Cryomagnetic measurements revealed Curie-Weiss behaviour with è = m 1.4 K. Such behaviour may be due to a very weak intramolecular superexchange interaction through the extended bridge, a weak intermolecular exchange interaction or the local zero-field splitting of Ni(II) ions.  相似文献   

15.
Reaction of [Ni(rac-CTH)(ClO(4))(2)](rac-CTH = rac-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane) with NaN(3) and Cu(NO(3))(2).3H(2)O produces the binuclear complex [Ni(rac-CTH)(mu(1,1)-N(3))(2)Cu(N(3))(2)] 1, which represents the first example of an end-on bridged bimetallic complex; 1 exhibits intramolecular ferromagnetic exchange coupling and thermochromism, this latter being a consequence of the intermolecular interaction at low temperature.  相似文献   

16.
An electron exchange column (analogous to ion exchange columns) was developed using the unique redox properties of the nickel-tetraazamacrocyclic complexes (nickel cyclam [Ni(II)L(1)](2+)) and nickel-trans-III-meso-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, ([Ni(II)L(2)](2+)), and the physical and chemical stability of the ceramic materials using the sol-gel process to entrap the complexes. The entrapment by the biphasic sol-gel method is based on non-covalent bonds between the matrix and the complex; therefore the main problem was leaching. Parameters controlling the leaching were investigated. Redox cycles with the reducing agent ascorbic acid, and persulfate as the oxidizing agent were performed.  相似文献   

17.
[Fe(IV)═O(TBC)(CH(3)CN)](2+) (TBC = 1,4,8,11-tetrabenzyl-1,4,8,11-tetraazacyclotetradecane) is characterized, and its reactivity differences relative to [Fe(IV)═O(TMC)(CH(3)CN)](2+) (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) are evaluated in hydrogen atom (H-atom) abstraction and oxo-transfer reactions. Structural differences are defined using X-ray absorption spectroscopy and correlated to reactivities using density functional theory. The S = 1 ground states are highly similar and result in large activation barriers (~25 kcal/mol) due to steric interactions between the cyclam chelate and the substrate (e.g., ethylbenzene) associated with the equatorial π-attack required by this spin state. Conversely, H-atom abstraction reactivity on an S = 2 surface allows for a σ-attack with an axial substrate approach. This results in decreased steric interactions with the cyclam and a lower barrier (~9 kcal/mol). For [Fe(IV)═O(TBC)(CH(3)CN)](2+), the S = 2 excited state in the reactant is lower in energy and therefore more accessible at the transition state due to a weaker ligand field associated with the steric interactions of the benzyl substituents with the trans-axial ligand. This study is further extended to the oxo-transfer reaction, which is a two-electron process requiring both σ- and π-electron transfer and thus a nonlinear transition state. In oxo-transfer, the S = 2 has a lower barrier due to sequential vs concerted (S = 1) two electron transfer which gives a high-spin ferric intermediate at the transition state. The [Fe(IV)═O(TBC)(CH(3)CN)](2+) complex is more distorted at the transition state, with the iron farther out of the equatorial plane due to the steric interaction of the benzyl groups with the trans-axial ligand. This allows for better orbital overlap with the substrate, a lower barrier, and an increased rate of oxo-transfer.  相似文献   

18.
Reactions of [Tp*Rh(coe)(MeCN)](1; Tp*= hydrotris(3,5-dimethylpyrazol-1-yl); coe = cyclooctene) with one equiv of diphenyl dichalcogenides PhEEPh (E = Se, Te) afforded the mononuclear Rh(III) complexes [Tp*Rh(EPh)(2)(MeCN)](2b: E = Se; 2c: E = Te), as reported previously for the formation of [Tp*Rh(SPh)(2)(MeCN)](2a) from the reaction of 1 and PhSSPh. Complexes 2a-2c were treated with the Ru(II) complex [(Cp*Ru)(4)(mu(3)-Cl)(4)](Cp*=eta(5)-C(5)Me(5)) in THF at room temperature, yielding the chalcogenolato-bridged dinuclear complexes [Tp*RhCl(mu-EPh)(2)RuCp*(MeCN)](3). Complex 3a (E = S) in solution was converted slowly into a mixture of 3a and the sterically less encumbered dinuclear complex [Tp*RhCl(SPh)(mu-eta(1)-S-eta(6)-Ph)RuCp*](4a) at room temperature. In 4a, one SPh group binds only to the Rh center as a terminal ligand, while the other SPh group bridges the Rh and Ru atoms by coordinating to the former at the S atom and to the latter with the Ph group in a pi fashion. The Se analogue 3b also underwent a similar transformation under more forcing conditions, e.g. in benzene at reflux, whereas formation of the mu-eta(1)-Te-eta(6)-Ph complex was not observed for the Te analogue 3c even under these forcing conditions. When complexes 3 was dissolved in THF exposed to air, the MeCN ligand bound to Ru was substituted by dioxygen to give the peroxo complexes [Tp*RhCl(mu-EPh)(2)RuCp*(eta(2)-O(2))](5a: E = S; 5b: E = Se; 5c: E = Te). X-Ray analyses have been undertaken to determine the detailed structures for 2c, 3a, 3b, 4a, 5a, 5b, and 5c.  相似文献   

19.
The known aryne complex (PEt3)2Ni(eta2-C6H2-4,5-F2) (1a) reacts with a catalytic amount of Br2Ni(PEt3)2 over 1% Na/Hg to afford the dinuclear Ni(I) biarylyl complex [(PEt3)2Ni]2(mu-eta1:eta1-3,4-F2C6H2-3',4'-F2C6H2) (2a), which results from a combination of C-C bond formation and C-H bond rearrangement. The dinuclear benzyne [(PEt3)2Ni]2(mu-eta2:eta2-C6H2-4,5-F2) (3) was obtained by the reaction of 1a with a stoichiometric amount of Br2Ni(PEt3)2 over excess 1% Na/Hg, and 3 was found to catalyze the conversion of 1a to 2a. The reaction of 1a with B(C6F5)3 produced the trinuclear complex (PEt3)3Ni3(mu3:eta1:eta1:eta2-4,5-F2C6H2)(mu3:eta1:eta1:eta2-4,5-F2C6H2-4',5'-F2C6H2) (6). The addition of PEt3 to 6 produced 1 equiv of 1a and 1 equiv of [(PEt3)2Ni]2(mu-eta1:eta1-4,5-F2C6H2-4',5'-F2C6H2) (7a). Both 6 and 7a were identified as intermediates in the conversion of 1a to 2a. The analogue [(PEt3)(PMe3)Ni]2(mu-eta1:eta1-4,5-F2C6H2-4',5'-F2C6H2) (7b) was prepared by the addition of PMe3 to 6 and was structurally characterized. NMR spectroscopic evidence identified the additional asymmetric biarylyl [(PEt3)2Ni]2(mu-eta1:eta1-4,5-F2C6H2-3',4'-F2C6H2) (8a) during the conversion of 1a to 2a. The initial observation of 2 equiv of 8a for every equivalent of 2a produced from solutions of 7a suggests that 8a and 2a are formed from a common intermediate. A crossover labeling experiment shows that the C-H bond rearrangement steps in the conversion of 1a to 2a occur with the intermolecular scrambling of hydrogen and deuterium labels. The evidence collected suggests that Ni(I) complexes are capable of activating aromatic C-H bonds.  相似文献   

20.
Two novel nickel(II) dinuclear complexes [Ni2(cyclam)2- (DTA)](ClO4)2 (1) and [Ni2(TAA)2(DTA)] (ClO4)2 (2) (TAA=N(CH2CH2NH2)3 , cyclam = 1,4,8,11-tetraazacyclotetradecane, DTA=dithiooxamide) have been prepared and studied by elemental analyses, i.r. and electronic spectra and magnetic measurements. The magnetic susceptibility temperature dependence was measured over the 77–300K range and the observed data were successfully simulated by an equation based on the spin Hamiltonian operator (H=–2JS1S2) giving the exchange integral J=–23.09cm–1 for (1) and J= –26.0cm–1 for (2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号