首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A computationally efficient approach that solves for the spatial covariance matrix along the dense particle ensemble-averaged trajectory has been successfully applied to describe turbulent dispersion in swirling flows. The procedure to solve for the spatial covariance matrix is based on turbulence isotropy assumption, and it is analogous to Taylor's approach for turbulent dispersion. Unlike stochastic dispersion models, this approach does not involve computing a large number of individual particle trajectories in order to adequately represent the particle phase; a few representative particle ensembles are sufficient to describe turbulent dispersion. The particle Lagrangian properties required in this method are based on a previous study (Shirolkar and McQuay, 1998). The fluid phase information available from practical turbulence models is sufficient to estimate the time and length scales in the model. In this study, two different turbulence models are used to solve for the fluid phase – the standard kε model, and a multiple-time-scale (MTS) model. The models developed here are evaluated with the experiments of Sommerfeld and Qiu (1991). A direct comparison between the dispersion model developed in this study and a stochastic dispersion model based on the eddy lifetime concept is also provided. Estimates for the Reynolds stresses required in the stochastic model are obtained from a set of second-order algebraic relations. The results presented in the study demonstrate the computational efficiency of the present dispersion modeling approach. The results also show that the MTS model provides improved single-phase results in comparison to the kε model. The particle statistics, which are computed based on the fundamentals of the present approach, compare favorably with the experimental data. Furthermore, these statistics closely compare to those obtained using a stochastic dispersion model. Finally, the results indicate that the particle predictions are relatively unaffected by whether the Reynolds stresses are based on algebraic relations or on the turbulence isotropy assumption.  相似文献   

2.
We construct exact solutions to an unusual nonlinear advection–diffusion equation arising in the study of Taylor–Aris (also known as shear) dispersion due to electroosmotic flow during electromigration in a capillary. An exact reduction to a Darboux equation is found under a traveling-wave ansatz. The equilibria of this ordinary differential equation are analyzed, showing that their stability is determined solely by the (dimensionless) wave speed without regard to any (dimensionless) physical parameters. Integral curves, connecting the appropriate equilibria of the Darboux equation that governs traveling waves, are constructed, which in turn are shown to be asymmetric kink solutions (i.e., non-Taylor shocks). Furthermore, it is shown that the governing Darboux equation exhibits bistability, which leads to two coexisting non-negative kink solutions for (dimensionless) wave speeds greater than unity. Finally, we give some remarks on other types of traveling-wave solutions and a discussion of some approximations of the governing partial differential equation of electromigration dispersion.  相似文献   

3.
The aim of the present study is to obtain surface flow visualisation, as well as local and spanwise averaged heat transfer measurements near a 180° sharp turn in a rectangular channel. The channel aspect ratio (width to height ratio) varies from 1 to 5 and the ratio between the width of the channel and that of the partition wall is always equal to 5. Heat transfer measurements are performed by means of the heated-thin-foil technique, which practically corresponds to a constant heat flux boundary condition, and by using infrared (IR) thermography. Two different heating conditions, in particular heating from one side (asymmetrical), or from two sides (symmetrical), are implemented. The convective heat transfer coefficient is evaluated from the measured temperature maps and the local bulk temperature of the flow which is obtained by making a one-dimensional balance along the channel. Results are presented in terms of local, or averaged, Nusselt number which is normalised with the classical Dittus and Boelter correlation. The fluid used during the test is air and the Reynolds number, based on the flow average velocity and channel hydraulic diameter, is varied between 16,000 and 60,000.  相似文献   

4.
The aim of this communication is to show the ability of POD to compute the instantaneous flow velocity when applying the Lagrangian technique to predict particle dispersion. The instantaneous flow velocity at the particle's location is obtained by solving a low-order dynamical model, deduced by a Galerkin projection of the Navier-Stokes equations onto each POD eigenfunction and it is coupled with the particle's equation of motion. This technique is applied to particle dispersion in a three-dimensional lid driven cavity. It yields a substantial decrease in computing time in comparison with LES computation and it enables treating different cases of particle dispersion Published in Prikladnaya Mekhanika, Vol. 44, No. 1, pp. 133–142, January 2008.  相似文献   

5.
The paper presents the longitudinal dispersion of passive tracer molecules released in an incompressible viscous fluid flowing through a channel with reactive walls under the action of a periodic pressure gradient. A finite-difference implicit scheme is adopted to solve the unsteady advection-diffusion equation based on the Aris-Barton method of moments for all time period. Here it is shown how the spreading of tracers is influenced by the shear flow, lateral diffusion about its mean position due to the action of absorption at both the walls. The analysis has been performed for three different cases: steady, periodic and the combined effect of steady and periodic currents, separately. The results show that for all cases the dispersion coefficient asymptotically reaches a stationary state after a certain critical time and it achieves a stationary state at earlier instant of time, when absorption at the walls increases. The axial distributions of mean concentration are determined from the first four central moments by using Hermite polynomial representation for all three different flow velocities.  相似文献   

6.
针对制造过程引起的通道壁面突起对微流控芯片电泳分离使用的影响进行数值计算和理论分析研究.分析了壁面突起产生机制及其对电泳分离效果的影响;阐述了毛细管电泳分离的物理模型并进行了离散化;编制了电泳分离数值计算程序,采用有限体积法计算微通道内电参数分布、缓冲溶液流场分布和样品区带分布;给出微通道壁面突起高度和突起宽度对电泳分离过程影响的计算结果.从计算结果可知:壁面突起高度是影响电渗流流速的主要因素,当壁面突起高度与微通道宽度的比值从0增加至0.2,电渗流流速变化幅度约为20%.  相似文献   

7.
Gill and Sankarasubramanian's analysis of the dispersion of Newtonian fluids in laminar flow between two parallel walls are extended to the flow of non-Newtonian viscoelastic fluid (known as third-grade fluid) using a generalized dispersion model which is valid for all times after the solute injection. The exact expression is obtained for longitudinal convective coefficient K1(Γ), which shows the effect of the added viscosity coefficient Γ on the convective coefficient. It is seen that the value of the K1(Γ) for Γ≠0 is always smaller than the corresponding value for a Newtonian fluid. Also, the effect of the added viscosity coefficient on the K2(t,Γ) (which is a measure of the longitudinal dispersion coefficient of the solute) is explored numerically. Finally, the axial distribution of the average concentration Cm of the solute over the channel cross-section is determined at a fixed instant after the solute injection for several values of the added viscosity coefficient.  相似文献   

8.
A pore scale analysis is implemented in this numerical study to investigate the behavior of microscopic inertia and thermal dispersion in a porous medium with a periodic structure. The macroscopic characteristics of the transport phenomena are evaluated with an averaging technique of the controlling variables at a pore scale level in an elementary cell of the porous structure. The Darcy–Forchheimer model describes the fluid motion through the porous medium while the continuity and Navier–Stokes equations are applied within the unit cell. An average energy equation is employed for the thermal part of the porous medium. The macroscopic pressure loss is computed in order to evaluate the dominant microscopic inertial effects. Local fluctuations of velocity and temperature at the pore scale are instrumental in the quantification of the thermal dispersion through the total effective thermal diffusivity. The numerical results demonstrate that microscopic inertia contributes significantly to the magnitude of the macroscopic pressure loss, in some instances with as much as 70%. Depending on the nature of the porous medium, the thermal dispersion may have a marked bearing on the heat transfer, particularly in the streamwise direction for a highly conducting fluid and certain values of the Peclet number.  相似文献   

9.
10.
Particle image velocimetry was used to study the structure of stationary acoustic flows on a solid surface subjected to acoustic radiation along the normal to the prefocal and postfocal planes of a spherical concentrator. The results of model experiments were used for rapid growth of water-soluble single crystals. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 4, pp. 11–17, July–August, 2009.  相似文献   

11.
Herein we study the inverse problem on inferring depth profile of near-surface residual stress in a weakly anisotropic medium by boundary measurement of Rayleigh-wave dispersion if all other relevant material parameters of the elastic medium are known. Our solution of this inverse problem is based on a recently developed algorithm by which each term of a high-frequency asymptotic formula for dispersion relations can be computed for Rayleigh waves that propagate in various directions along the free surface of a vertically-inhomogeneous, prestressed, and weakly anisotropic half-space. As a prime example of possible applications we focus on a thick-plate sample of AA 7075-T651 aluminum alloy, which has one face treated by low plasticity burnishing (LPB) that induced a depth-dependent prestress at and immediately beneath the treated surface. We model the sample as a prestressed, weakly-textured orthorhombic aggregate of cubic crystallites and assume that by nondestructive and/or destructive measurements we have ascertained everything about the sample, including the LPB-induced prestress, before it is put into service. Under the supposition that the prestress be partially relaxed but other material parameters remain unchanged after the sample undergoes a period of service, we examine the possibility of inferring the depth profile of the partially relaxed stress by boundary measurement of Rayleigh-wave dispersion.  相似文献   

12.
13.
The lattice‐Boltzmann (LB) method, derived from lattice gas automata, is a relatively new technique for studying transport problems. The LB method is investigated for its accuracy to study fluid dynamics and dispersion problems. Two problems of relevance to flow and dispersion in porous media are addressed: (i) Poiseuille flow between parallel plates (which is analogous to flow in pore throats in two‐dimensional porous networks), and (ii) flow through an expansion–contraction geometry (which is analogous to flow in pore bodies in two‐dimensional porous networks). The results obtained from the LB simulations are compared with analytical solutions when available, and with solutions obtained from a finite element code (FIDAP) when analytical results are not available. Excellent agreement is found between the LB results and the analytical/FIDAP solutions in most cases, indicating the utility of the lattice‐Boltzmann method for solving fluid dynamics and dispersion problems. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, the shock pattern oscillations induced by shock/shock interactions over double-wedge geometries in hypersonic flows were studied numerically by solving 2D inviscid Euler equations for a multi-species system. Laminar viscous effects were considered in some cases. Temperature-dependent thermodynamic properties were employed in the state and energy equations for consideration of the distinct change of the thermodynamic state. It was shown that the oscillation results in high-frequency fluctuations of heating and pressure loads over wedge surfaces. In a case with a relatively lower free-stream Mach number, the shock/shock interaction structure maintains a seven-shock configuration during the entire oscillation process. On the other hand, the oscillation is accompanied by a transition between a six-shock configuration (regular interaction) and a seven-shock configuration (Mach interaction) in a case with a higher free-stream Mach number. Numerical results also indicate that the critical wedge angle for the transition from a steady to an oscillation solution is higher compared to the corresponding value in earlier numerical research in which the perfect diatomic gas model was used.   相似文献   

15.
The percolation theory approach to static and dynamic properties of the single- and two-phase fluid flow in porous media is described. Using percolation cluster scaling laws, one can obtain functional relations between the saturation fraction of a given phase and the capillary pressure, the relative permeability, and the dispersion coefficient, in drainage and imbibition processes. In addition, the scale dependency of the transport coefficient is shown to be an outcome of the fractal nature of pore space and of the random flow pattern of the fluids or contaminant.  相似文献   

16.
In this paper we are interested in the Quartapelle–Napolitano approach to calculation of forces in viscous incompressible flows in exterior domains. We study the possibility of deriving a simpler formulation of this approach which might lead to a more convenient expression for the hydrodynamic force, but conclude that such a simplification is, within the family of approaches considered, impossible. This shows that the original Quartapelle–Napolitano formula is in fact “optimal” within this class of approaches.  相似文献   

17.
18.
The present paper deals with the determination of quasi-static thermal stresses due to an instantaneous point heat source of strength gpi situated at certain circle along the radial direction of the circular plate and releasing its heat spontaneously at time t = τ. A circular plate is considered having arbitrary initial temperature and subjected to time dependent heat flux at the fixed circular boundary of r = b. The governing heat conduction equation is solved by using the integral transform method, and results are obtained in series form in terms of Bessel functions. The mathematical model has been constructed for copper material and the thermal stresses are discussed graphically.  相似文献   

19.
The paper describes pertinent laboratory tests to characterize the rheological properties of paper coatings with regard to blade coating over a very wide range of shear rates in both transient and steady-state shear flows. Shear rates as high as 106 s–1 can be reached by means of a gas-driven capillary rheometer. Examples for the evaluation of end effects, wall effects, and coating thixotropy are given. A stiff and fast Couette rheometer is used to determine flow curves and the shear stress overshoot in step shear rate tests. The primary normal stress difference can be measured up to 104 s–1 by means of a high shear cone-plate rheometer with piezo transducer. A correct evaluation of the measurements has to take into account inertia contributions to the normal force. First results using a sinusoidal modulation of the shear rate are presented.Paper presented at: International Symposium on Pigment Coating Structure and Rheology, Helsinki, Febr. 8–9, 1989  相似文献   

20.
A two‐step conservative level set method is proposed in this study to simulate the gas/water two‐phase flow. For the sake of accuracy, the spatial derivative terms in the equations of motion for an incompressible fluid flow are approximated by the coupled compact scheme. For accurately predicting the modified level set function, the dispersion‐relation‐preserving advection scheme is developed to preserve the theoretical dispersion relation for the first‐order derivative terms shown in the pure advection equation cast in conservative form. For the purpose of retaining its long‐time accurate Casimir functionals and Hamiltonian in the transport equation for the level set function, the time derivative term is discretized by the sixth‐order accurate symplectic Runge–Kutta scheme. To resolve contact discontinuity oscillations near interface, nonlinear compression flux term and artificial damping term are properly added to the second‐step equation of the modified level set method. For the verification of the proposed dispersion‐relation‐preserving scheme applied in non‐staggered grids for solving the incompressible flow equations, three benchmark problems have been chosen in this study. The conservative level set method with area‐preserving property proposed for capturing the interface in incompressible fluid flows is also verified by solving the dam‐break, Rayleigh–Taylor instability, bubble rising in water, and droplet falling in water problems. Good agreements with the referenced solutions are demonstrated in all the investigated problems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号