首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
This paper describes the results of an experimental study of heat transfer in the case of the flow of a helium–xenon mixture with a Prandtl number approximately equal to 0.23 and the flows of pure helium and air in heated tubes of circular or triangular cross sections with a constant density of the heat flow. The region of thermal stability is studied. The law of heat transfer on the stabilized region is compared with known relationships. The approach that helps obtaining an expression for the calculation of heat transfer in heat transfer devices with circular and triangular cross sections, which operate in a mixture heating mode on the initial region, is developed.  相似文献   

2.
The natural convection heat transfer characteristics and mechanism for copper micro-wires in water and air were investigated experimentally and numerically. The wires with diameters of 39.9, 65.8 and 119.1 μm were placed horizontally in water inside of a sealed tube and in air of a large room, respectively. Using Joule heating, the heat transfer coefficients and Nusselt numbers of natural convection for micro-wires in ultra pure water and air were obtained. A three dimensional incompressible numerical model was used to investigate the natural convection, and the prediction with this model was in reasonable accordance with the experimental results. With the decrease of micro-wire diameter, the heat transfer coefficient of natural convection on the surface of micro-wire becomes larger, while the Nu number of natural convection decreases in water and air. Besides, the change rate of Nu number in water decreases apparently with the increase of heat flux and the decrease of wire diameter, which is larger than that in air. The thickness of boundary layer on the wall of micro-wire becomes thinner with the decrease of diameter in both water and air, but the ratio of boundary layer thickness in water to the diameter increases. However, there is almost no change of this ratio for natural convection in air. As a result, the proportion of conduction in total heat transfer of natural convection in water increases, while the convective heat transfer decreases. The velocity distribution, temperature field and the boundary layer in the natural convection were compared with those of tube with conventional dimension. It was found that the boundary layer around the micro-wire is an oval-shaped film on the surface, which was different from that around the conventional tube. This apparently reduces the convection strength in the natural convection, thus the heat transfer presents a conduction characteristic.  相似文献   

3.
A concise and accurate solution to the problem of plane Couette flow for a binary mixture of rigid-sphere gases described by the linearized Boltzmann equation and general (specular-diffuse) Maxwell boundary conditions for each of the two species of gas particles is developed. An analytical version of the discrete-ordinates method is used to establish the velocity, heat-flow, and shear-stress profiles for both types of particles, as well as the particle-flow and heat-flow rates associated with each of the two species. Accurate numerical results are given for the case of a mixture of helium and argon confined between molybdenum and tantalum plates.  相似文献   

4.
In this article nonsimilarity solution for mixed convection from a horizontal surface in a saturated porous medium was obtained for the case of variable surface heat flux. The entire mixed convection regime, ranging from pure forced convection to pure free convection, is considered by introducing a single nonsimilarity parameter. Heat transfer results are predicted by employing four different flow models, namely, Darcy's law, the Ergun model, and the Brinkman-Forchheimer-extended Darcy model with constant and variable porosity. The variable porosity effect is approximated by an exponential function. Effects of transverse thermal dispersion are taken into consideration in the energy equation, along with variable stagnant thermal conductivities. The formulation of the present problem shows that the flow and heat transfer characteristics depend on five parameters, that is, the power in the variation of surface heat flux, the nonsimilarity mixed-convection parameter, the inertia effect parameter, the boundary effect parameter, and the ratio of thermal conductivity of the fluid phase to that of the solid phase. Numerical results for the local Nusselt number variations, based on the various flow models, are presented for the entire mixed convection regime. The impacts␣of different governing parameters on the heat transfer results are thoroughly investigated. Received on 7 August 1997  相似文献   

5.
Laminar thermosolutal convection in cavities with uniform, constant temperature and mass fraction profiles at the vertical side is studied numerically. The study is conducted in the case where an inert carrier gas (species “1”) present in the cavity is not soluble in species “2”, and do not diffuse into the walls. A mass flux of species “2” into the cavity occurs at the hot vertical wall and a mass flux out of the cavity occurs at the opposite cold wall. The weakly compressible model proposed in this work was used to investigate the flow fields, and heat and mass transfer in cavities filled with binary mixtures of ideal gases. The dimensionless form of the seven governing equations for constant thermophysical properties, except density, show that the problem formulation involves ten dimensionless parameters. The results were validated against numerical results published in the literature for purely thermal convection, and thermodynamic predictions for transient thermosolutal flows. A parametric study has been performed to investigate the effects of the initial conditions, molecular weight ratio, Lewis number, and aspect ratio of the cavity for aiding or opposing buoyancy forces. For the range of parameters considered, the results show that variations in the density field have larger effects on mass transfer than on heat transfer. For opposing buoyancy forces, the numerical simulations predict complex flow structures and possible chaotic behavior for rectangular vertical cavities according to the value of the molecular weight ratio.  相似文献   

6.
An experimental study on heat transfer enhancement for a turbulent natural convection boundary layer in air along a vertical flat plate has been performed by inserting a long flat plate in the spanwise direction (simple heat transfer promoter) and short flat plates aligned in the spanwise direction (split heat transfer promoter) with clearances into the near-wall region of the boundary layer. For a simple heat transfer promoter, the heat transfer coefficients increase by a peak value of approximately 37% in the downstream region of the promoter compared with those in the usual turbulent natural convection boundary layer. It is found from flow visualization and simultaneous measurements of the flow and thermal fields with hot- and cold-wires that such increase of heat transfer coefficients is mainly caused by the deflection of flows toward the outer region of the boundary layer and the invasion of low-temperature fluids from the outer region to the near-wall region with large-scale vortex motions riding out the promoter. However, heat transfer coefficients for a split heat transfer promoter exhibit an increase in peak value of approximately 60% in the downstream region of the promoter. Flow visualization and PIV measurements show that such remarkable heat transfer enhancement is attributed to longitudinal vortices generated by flows passing through the clearances of the promoter in addition to large-scale vortex motions riding out the promoter. Consequently, it is concluded that heat transfer enhancement of the turbulent natural convection boundary layer can be substantially achieved in a wide area of the turbulent natural convection boundary layer by employing multiple column split heat transfer promoters. It may be expected that the heat transfer enhancement in excess of approximately 40% can be accomplished by inserting such promoters.  相似文献   

7.
This research paper presents a preliminary thermodynamic study of an innovative power plant operating under a Rankine cycle fed by an external combustion system with turbo-blower (TB). The power plant comprises an external combustion system for natural gas, where the combustion gases yield their thermal energy, through a heat exchanger, to a carbon dioxide Rankine cycle operating under supercritical conditions and with quasi-critical condensation. The TB exploits the energy from the pressurised exhaust gases for compressing the combustion air. The study is focused on the comparison of the combustion system’s conventional technology with that of the proposed. An energy analysis is carried out and the effect of the flue gas pressure on the efficiency and on the heat transfer in the heat exchanger is studied. The coupling of the TB results in an increase in efficiency and of the convection coefficient of the flue gas with pressure, favouring a reduced volume of the heat exchanger. The proposed innovative system achieves increases in efficiency of around 12 % as well as a decrease in the heat exchanger volume of 3/5 compared with the conventional technology without TB.  相似文献   

8.
An optical deflectometry system is used to provide unique space–time correlation measurements at two positions separated by varying axial distances within a high-speed jet shear layer. The measurements were made for both pure air and for helium/air mixture jets at Mach numbers M=0.9 and M=1.5. The jets issue from round nozzles and the sensing volumes at the two measurement positions consist of small light filaments along spanwise lines that are tangential to the annular jet shear layer. Applying this technique to obtain measurements detailing the level of correlation, spectral content, and convection velocity for jet flows in these flow regimes near the end of the potential core is particularly important in the understanding and prediction of jet noise. Measurements near the end of the potential core along the jet lip line exhibit distinct cross-correlation curves for the pure air jet cases. However, helium/air mixture jets display much lower levels of correlation and little evidence of large-scale structure in the measured spectra. It is believed that the thick visual density gradients dominated by smaller scales throughout the shear layer of the helium/air mixture jets effectively mask the large-scale structure, thus, reflecting a limitation of this optical deflectometer. Finally, a decrease in normalized convection velocity with helium addition is observed.  相似文献   

9.
Since the heat transfer performance of syngas cooler affects the efficiency of the power generating system with integrated coal gasification combined cycle (IGCC) directly, it is important to obtain the heat transfer characteristics of high-pressure syngas in the cooler. Heat transfer in convection cooling section of pressurized coal gasifier with the membrane helical coils and membrane serpentine tubes under high pressure is experimentally investigated. High pressure single gas (He or N2) and their mixture (He + N2) gas serve as the test media in the test pressure range from 0.5 MPa to 3.0 MPa. The results show that the convection heat transfer coefficient of high pressure gas is influenced by the working pressure, gas composition and symmetry of flow around the coil, of which the working pressure is the most significant factor. The average convection heat transfer coefficients for various gases in heat exchangers are systematically analyzed, and the correlations between Nu and Re for two kinds of membrane heat exchangers are obtained. The heat transfer coefficient of heat exchanger with membrane helical coils is greater than that of the membrane serpentine-tube heat exchanger under the same conditions. The heat transfer coefficient increment of the membrane helical-coil heat exchanger is greater than that of the membrane serpentine-tube heat exchanger with the increase of gas pressure and velocity.  相似文献   

10.
The objective of this study is to extend the attention of the incompressible smoothed particle hydrodynamics method (ISPH) in the heat transfer field. The ISPH method for the natural convection heat transfer under the Boussinesq approximation in various environments: pure-fluid, nanofluid, and non-Darcy porous medium is introduced. We adopted the improved analytical method for calculating the kernel renormalization factor and its gradient based on a quintic kernel function for the wall boundary treatment in the ISPH method. The proposed method requires no dummy particle layer to meet the impermeability condition and makes the heat flux over the wall boundary easy to implement. We performed four different numerical simulations of natural convection in cavities with increasing complexity in modeling and implementation: the natural convection in a square cavity with constant differentially heated wall temperature, natural convection with the heat flux from the bottom wall for a wide range of Rayleigh numbers, natural convection in a non-Darcy porous cavity fully filled with nanofluid in different flow regimes, and natural convection in a partially layered porous cavity. The results showed excellent agreement with results from literatures and the in-house P1–P1 finite element method code.  相似文献   

11.
 The paper deals with the experimental investigation of heat transfer from a vertical isothermal plate mounted inside a cabinet with lateral openings. Ambient air is drawn into the cabinet and cools the plate by natural convection. The experiments were conducted by varying the distance between the plate and the cabinet walls, the plate-to-ambient temperature difference and the size, position, shape and number of the vent openings. Local and average heat transfer coefficients along the plate were measured by the schlieren optical technique. Heat transfer rates from the plate turned out to be significantly influenced by the geometric and thermal parameters investigated. The results provide a useful tool for thermal design of cooling systems by air natural ventilation. Received on 17 January 2000  相似文献   

12.
In the vicinity of the gas–liquid critical point, transport coefficients of pure fluids experience important changes. In particular, the thermal diffusivity tends to zero whereas the isothermal compressibility tends to infinity. Supercritical fluids are thus as dense as liquids and much more expandable than gases. These properties make the hydrodynamic similarity parameters vary over orders of magnitude when nearing the critical point, thus leading to a large field of research. We review here four main fields: heat transfer, cavity flows, interfaces and hydrodynamic instabilities. In the first, we present a fourth adiabatic heat transfer mechanism, called the piston effect, which carries heat much faster than diffusion, in the absence of convection. In the second, we show how this heat transfer mechanism interacts with buoyant convection. In the third, we basically show that a thermally non-homogeneous near-critical fluid behaves as a two miscible-phases fluid. In the fourth, we present some specific behavior of the Rayleigh–Benard convection, as recent experiments and numerical simulations have indicated. The last part gives some pathways in the continuation of the current research. We stress the need to fully develop the hydrodynamic of highly expandable, low heat diffusing fluids since the subject is both a bearer of new physics and is needed for the development of processes in chemical engineering. To cite this article: B. Zappoli, C. R. Mecanique 331 (2003).  相似文献   

13.
Air and water velocity fields have been simulated during natural convection, using a two-dimensional volume of fluid (VOF) model. The results have shown that during unstable thermal stratification, the root-mean-square (RMS) airside velocities are an order of magnitude higher than the RMS waterside velocities, whereas, during the stable thermal stratification, the velocity magnitudes are comparable for air and water sides. Furthermore, the magnitude of the air velocity changed more rapidly with the change in the bulk air–water temperature difference than the water velocity, indicating that the air velocities are more sensitive to the bulk air and water temperature difference than the water velocities. A physical model of the heat and mass transfer across the air–water interface is defined. According to this model, the vortices on the air and water sides play an important role in enhancing the heat and mass transfer. Due to the significance of the flow velocities in the transport process, it has been proposed that the correlations for the heat and mass transfer during natural convection should be improved by incorporating the flow velocity as a parameter.  相似文献   

14.
The natural convection heat transfer of air in a porous media can be controlled by gradient magnetic field. Thermomagnetic convection of air in a porous cubic enclosure with an electric coil inclined around the $Y$ axis was numerically investigated. The Biot–Savart law was used to calculate the magnetic field. The governing equations in primitive variables were discretized by the finite-volume method and solved by the SIMPLE algorithm. The flow and temperature fields for the air natural convection were presented and the mean Nusselt number on the hot wall was calculated and compared. The results show that both the magnetic force and coil inclination have significant effect on the flow field and heat transfer in a porous cubic enclosure, the natural convection heat transfer of air can be enhanced or controlled by applying gradient magnetic field.  相似文献   

15.
In this work the numerical and experimental results of heat transfer in a vertical tall closed cavity are presented. The cavity has an aspect ratio of 20, one of the vertical walls receive a constant and uniform heat flux, while the opposite wall is kept at a constant temperature. The remaining walls are assumed adiabatic. The cavity is full of air. The computational fluid dynamics software Fluent 6.3 was used for the simulation and an experimental prototype was built to obtain the heat transfer coefficients. The air temperature and the fluid velocity values are higher when emissivity (ε) is 0.03 (almost pure natural convection). The experimental total heat transfer coefficient increases between 119.9 and 159.9 % when the emissivity of the walls changes from 0.03 to 0.95.  相似文献   

16.
Heat transfer in the laminar boundary layer of a transparent gas flowing aroud a plane radiating surface is studied. Radiative heat-transfer processes in gases may be divided into two main groups. The first involves heat transfer in absorbing and radiating media. In this case, the effect of radiation lies in the introduction of new terms into the energy equation, representing internal heat sources and sinks. The second group embraces heat-transfer processes in a transparent gas when the effect of radiation on convection expresses itself solely by way of the boundary conditions. Here we study a case of practical importance belonging to the second group: heat transfer in the laminary boundary layer of a transparent gas flowing around a flat plate with the thermal flux qw specified on its surface.Novosibirsk. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 107–110, January–February, 1972.  相似文献   

17.
The forced convection heat transfer with water vapor condensation is studied both theoretically and experimentally when wet flue gas passes downwards through a bank of horizontal tubes. Extraordinarily, discussions are concentrated on the effect of water vapor condensation on forced convection heat transfer. In the experiments, the air–steam mixture is used to simulate the flue gas of a natural gas fired boiler, and the vapor mass fraction ranges from 3.2 to 12.8%. By theoretical analysis, a new dimensionless number defined as augmentation factor is derived to account for the effect of condensation of relatively small amount of water vapor on convection heat transfer, and a consequent correlation is proposed based on the experimental data to describe the combined convection–condensation heat transfer. Good agreement can be found between the values of the Nusselt number obtained from the experiments and calculated by the correlation. The maximum deviation is within ±6%. The experimental results also shows that the convection–condensation heat transfer coefficient increases with Reynolds number and bulk vapor mass fraction, and is 1∼3.5 times that of the forced convection without condensation.  相似文献   

18.
The mixed convection heat transfer of upward molten salt flow in a vertical annular duct is experimentally and numerically studied. The heat transfer performances of mixed convection are measured under Reynolds number 2,500–12,000 and inlet temperature 300–400 °C, and Nusselt number of molten salt flow with cooled inner wall monotonically increases with buoyancy number. The mixed convection is further simulated by low-Reynolds number k-ε model and variable properties, and the heat transfer tendency from numerical results agrees with that from experiments. At low Reynolds number, the natural convection plays more important role in the mixed convection. As the buoyancy number rises, the thickness of flow boundary layer near the inner wall increases, while the effective thermal conductivity remarkably rises, so the enhanced heat transfer of mixed convection is mainly affected by the effective thermal conductivity due to turbulent diffusion.  相似文献   

19.
In solving several technical problems it is necessary to know what takes place in a closed rotating axisymmetric cavity filled with a nonuniformly heated viscous fluid. Such cavities are encountered, for example, in the rotors of steam and gas turbines. The thermal convection in these cavities is studied for a definite temperature condition of the rotors: in [1, 2] some qualitative considerations are presented, and quantitative estimates are given for thermal convection in cavities of turbine rotors; in [3,4] there is presented a very approximate calculation using the method of integral relations of the heat transfer coefficients in the case of a narrow cavity between two rotating disks which have different temperatures. We note that the thermal convection effect in a rotating cavity may be utilized in various technical devices, for example, in equipment for separating isotopes, etc. [5], A solution is presented for the problem of laminar thermal convection in a narrow cavity between two disks which are rotating with the same velocity and which have different temperatures which are constant along the radius. In the case of the narrow cavity we can neglect the influence of the cylindrical cavity rim on the flow in primary portion of the cavity (see [6]); therefore it is sufficient to solve the self-similar problem for two infinite disks.In conclusion I would like to thank A. Z. Serazetdinov and V. L. Karaseva for carrying out the computer calculations.  相似文献   

20.
This paper presents an analysis of the problem of a thin fin of finite thermal conductivity, with an isothermal line source at the base, dissipating heat to the surrounding air by natural convection. The horizontal surface to which the fin is attached is adiabatic so that heat is dissipated only through the fin. The temperature and velocity distributions in the field, the temperature profile in the fin, local Nusselt numbers along the fin and the average heat transfer coefficient of the fin are obtained by solving the governing equations in the field and the heat transfer equation in the fin simultaneously, using an explicit unsteady Finite Difference formulation leading to the steady state result. Numerical experiments are performed to study the influence of parameters namely the fin height, temperature of the heating source and the fin material on the average heat transfer coefficient. Comparison is made with fins of infinite thermal conductivity and the vertical isothermal flat plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号