首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for the quantification of clindamycin in animal plasma using high-performance liquid chromatography combined with electrospray ionization mass spectrometry (LC/ESI-MS/MS) is presented. Lincomycin is used as the internal standard. The sample preparation includes a simple deproteinization step with trichloroacetic acid. Chromatographic separation is achieved on an RP-18 Hypersil column using gradient elution with 0.01 M ammonium acetate and acetonitrile as mobile phase. Good linearity was observed in the range 0-10 microg ml(-1). The limit of quantification of the method is 50 ng ml(-1) and the limit of detection is 1.3 ng ml(-1). The method was shown out to be of use for pharmacokinetic studies of clindamycin formulations in dogs.  相似文献   

2.
A novel, sensitive and specific method for the quantitative determination of ivermectin B(1a) in animal plasma using liquid chromatography combined with positive electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) is presented. Abamectin was used as the internal standard. Extraction of the samples was performed with a deproteinization step using acetonitrile. Chromatographic separation was achieved on a Nucleosil ODS 5 microm column, using gradient elution with 0.2% (v/v) acetic acid in water and 0.2% (v/v) acetic acid in acetonitrile. The method was validated according to the requirements defined by the European Community. Calibration curves using plasma fortified between 1 and 100 ng ml(-1) showed a good linear correlation (r > or = 0.9989, goodness-of-fit coefficient < or =8.1%). The trueness at 2 and 25 ng ml(-1) (n = 6) was +4.2 and -17.1%, respectively. The trueness and between-run precision for the analysis of quality control samples at 25 ng ml(-1) was -4.0 and 11.0%, respectively (n = 16). The limit of quantification of the method was 1.0 ng ml(-1), for which the trueness and precision also fell within acceptable limits. Using a signal-to-noise ratio of 3 : 1, the limit of detection was calculated to be 0.2 ng ml(-1). The specificity was demonstrated with respect to ivermectin B(1b).The method was successfully used for the quantitative determination of ivermectin B(1a) in plasma samples from treated bovines, demonstrating the usefulness of the developed method for application in the field of pharmacokinetics.  相似文献   

3.
Currently, the information available on the physiological functions of melatonin in higher plants is rather limited and the role of plant melatonin in human health remains undetermined. Research in this area has been slow due to lack of efficient analytical methods for rapid identification and quantification of the melatonin and related compounds in complex plant matrices. In this communication, we report the development of a rapid, accurate method for extraction, detection and quantification of plant melatonin, serotonin and indole-3-acetic acid (IAA) by Liquid chromatography-tandem mass spectrometry (LC-MS/MS) with electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photoionization (APPI), respectively. The limit of detection (LOD) of melatonin in the plant extraction was 5 pg/ml and the limit of quantification (LOQ) was 0.02 ng/ml, as well as LOD for serotonin was 100 pg/ml and the LOQ was 5 ng/ml, LOD for IAA was 50 pg/ml and the LOQ was 0.7 ng/ml. There was a linear relationship between melatonin, serotonin, and IAA concentration and peak area over a quantifiable range of 0.02 ng/ml to 0.1 mg/ml, 5 ng/ml to 0.1 mg/ml, and 0.7 ng/ml to 0.1 mg/ml, respectively, in the plant extract.  相似文献   

4.
In this study, a sensitive and selective method based on liquid chromatography combined with diode array and tandem mass spectrometry detection (LC-DAD-MS/MS) was developed for the simultaneous quantitative determination of fenofibric acid, pravastatin and its main metabolites in human plasma. In this method, an automated solid-phase extraction (SPE) on disposable extraction cartridges (DECs) is used to isolate the compounds from the biological matrix and to prepare a cleaner sample before injection and analysis in the LC-DAD-MS/MS system. On-line LC-DAD-MS/MS system using an atmospheric pressure ionization (TurboIonSpray) was then developed for the simultaneous determination of pravastatin, 3-hydroxy isomeric metabolite (3-OH metab), pravalactone and fenofibric acid. The separation is obtained on an endcapped dodecyl silica based stationary phase using a mobile phase consisting of a mixture of acetonitrile, methanol and 5mM ammonium acetate solution (30:30:40, v/v/v). Sulindac and triamcinolone were used as internal standards (ISs). The detection of the fenofibric acid and sulindac was achieved by means of a DAD system. The MS/MS ion transitions monitored were m/z 442.2-->269.1, 442.2-->269.1, 424.3-->183.0 and 435.2-->397.2 for pravastatin, 3-OH metab, pravalactone and triamcinolone, respectively. The method was validated regarding stability, selectivity, extraction efficiency, response function, trueness, precision lower limit of quantitation and matrix effect. The limits of quantitation (LOQs) were around 0.50 ng/ml for pravastatin, 0.25 ng/ml for 3-OH metab, 0.05 ng/ml for pravalactone and 0.25 microg/ml for fenofibric acid.  相似文献   

5.
《Analytical letters》2012,45(15):2797-2807
Abstract

A rapid, convenient, and sensitive liquid chromatography–electrospray ionization–mass spectrometry method was developed and validated for the quantification of hydrochlorothiazide in human plasma. The samples were first spiked with the internal standard, and the analyte was then extracted with ethyl acetate. The chromatographic separation was achieved on a C18 column by using water–acetonitrile (68:32, v/v) as mobile phase. The method was linear within the range of 2.5–200 ng/ml. The lower limit of quantification was 1.0 ng/ml. Finally, the validated method was successfully applied for the evaluation of the pharmacokinetic profiles of hydrochlorothiazide in healthy male Chinese volunteers.  相似文献   

6.
高效液相色谱-串联质谱法检测奶中克拉维酸残留   总被引:2,自引:0,他引:2  
杨刚  黄显会  郭春娜  方秋华  贺利民 《色谱》2012,30(6):568-571
采用高效液相色谱-串联质谱(HPLC-MS/MS)建立了克拉维酸在奶中的残留检测方法。2 g样品经乙醇沉淀蛋白质后,转入鸡心瓶中旋转蒸发浓缩至0.5 mL左右,用乙酸铵定容,净化后检测。流动相为乙腈和0.1%甲酸水,梯度洗脱,经Luna 5u C8色谱柱分离,采用电喷雾电离,多反应监测负离子模式对克拉维酸进行定量分析。采用基质匹配法对奶中克拉维酸的含量进行标准校正,在克拉维酸含量为10~400 μg/kg范围内呈现良好的线性关系,相关系数大于0.999;奶中加标样品的检出限(LOD,按信噪比(S/N)≥3计)为10 μg/kg,定量限(LOQ, S/N≥10)为20 μg/kg。在定量限、1/2最高残留限量、最高残留限量、2倍最高残留限量添加水平下,奶中克拉维酸的平均回收率为80.00%~91.25%,相对标准偏差为5.60%~8.77%。该方法可用于奶中克拉维酸残留的分析检测。  相似文献   

7.
Liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) was used for the quantification of the neuromuscular blocking agent rocuronium in human plasma. Verapamil was used as internal standard. The samples were subjected to a dichloromethane liquid-liquid extraction after ion pairing of the positively charged ammonium compound with iodide prior to LC-MS. Optimized conditions involved separation on a Symmetry Shield RP-18 column (50 x 2.1 mm, 3.5 microm) using a 15-min gradient from 10 to 90% acetonitrile in water containing 0.1% trifluoroacetic acid at 250 microl/min. Linear detector responses for standards were observed from 25 to 2,000 ng/ml. The extraction recovery averaged 59% for rocuronium and 83% for the internal standard. The limit of quantification (LOQ), using 500 microl of plasma, was 25 ng/ml. Precision ranged from 1.3 to 19% (LOQ), and accuracy was between 92 and 112%. In plasma samples, at 20 and 4 degrees C, rocuronium was stable at physiological pH for 4 h; frozen at -30 degrees C it was stable for at least 75 days. The method was found suitable for the analysis of samples collected during pharmacokinetic investigations in humans.  相似文献   

8.
Actarit (ATR), 4‐acetylaminophenylacetic acid is an orally effective disease‐modifying anti‐rheumatic drug widely prescribed for the treatment of rheumatoid arthritis. The present study demonstrates the first report on a selective and sensitive liquid chromatography–tandem mass spectrometry method for the quantification of ATR in rabbit plasma using p‐coumaric acid as an internal standard (IS). Following liquid–liquid extraction, chromatographic separation of the reconstituted samples was achieved isocratically on a Syncronis‐C18 column with a mobile phase consisting of aqueous ammonium acetate (10 mM, pH 4)‐ methanol and acetonitrile mixture (8 : 92, v/v) at a flow rate of 0.6 ml/min. ATR and IS were detected using electrospray ionization operated in negative multiple reaction monitoring mode. The calibration curve was linear (r2 ≥ 0.990) over the concentration range of 1–4000 ng/ml with a lower limit of quantitation of 1 ng/ml. The mean extraction recovery of ATR and IS from rabbit plasma was greater than 85%. The method complied well with US Food and Drug Administration guidelines for selectivity, sensitivity, accuracy, precision, matrix effect, dilution integrity, carry‐over effect and stability. The method was successfully applied to in vitro metabolic stability (using rabbit liver microsomes) and in vivo pharmacokinetic study after oral administration of ATR at a dose of 10 mg/kg in New Zealand rabbits. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Phenibut (3-phenyl-4-aminobutyric acid) is a γ-aminobutyric acid mimetic drug, which is used clinically as a mood elevator and tranquilizer. In the present work, a rapid, selective and sensitive liquid chromatography–tandem mass spectrometry method for quantification of phenibut in biological matrices has been developed. The method is based on protein precipitation with acidic acetonitrile followed by isocratic chromatographic separation using acetonitrile–formic acid (0.1% in water; 8:92, v/v) mobile phase on a reversed-phase column. Detection of the analyte was performed by electrospray ionization mass spectrometry in multiple reaction monitoring mode with the precursor-to-product ion transition m/z 180.3 → m/z 117.2. The calibration curve was linear over the concentration range 50–2000 ng/mL. The lower limit of quantification for phenibut in rat brain extracts was 50 ng/mL. Acceptable precision and accuracy were obtained over the whole concentration range. The validated method was successfully applied in a pharmacological study to analyze phenibut concentration in rat brain tissue extract samples. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
The aim of this study was to develop a rapid and sensitive method for the quantification of cefquinome in animal plasma and bronchoalveolar lavage (BAL) fluid using high-performance liquid chromatography combined with electrospray tandem mass spectrometry (LC-ESI-MS/MS). Cefadroxil is used as internal standard. For plasma, the sample preparation includes a simple deproteinization step with a Microcon filter. This allows detecting the unbound cefquinome concentration, which is correlated with the concentration in other body fluids, such as BAL fluid. To be able to detect the total plasma concentration, deproteinization with acetonitrile, followed by a back-extraction of actonitrile with dichloromethane was performed. The BAL fluid is centrifuged to precipitate floating particles. Chromatographic separation is achieved on a PLRP-S column using 0.005% formic acid and methanol as mobile phase. For plasma, good linearity was observed in the range of 5-2500 ng ml(-1) for both the unbound and total concentration. The response in BAL fluid was linear in the range of 4-1000 ng ml(-1). The limit of quantification (LOQ) was set at 5.00 ng ml(-1) for plasma and at 4.00 ng ml(-1) for BAL fluid. The limit of detection (LOD) was 3.12 ng ml(-1) and 0.41 ng ml(-1) for the unbound and total concentration in plasma, respectively, and was 1.43 ng ml(-1) for BAL fluid. The method was shown to be of use in a pharmacokinetic study in pigs, where the correlation between cefquinome concentrations in plasma and BAL fluid of pigs was studied.  相似文献   

11.
Determination of malotilate and its metabolites in plasma and urine   总被引:1,自引:0,他引:1  
A method for the determination of malotilate (I), the corresponding monocarboxylic acid (II) and its decarboxylated product (III) in plasma is described. Plasma was extracted with chloroform spiked with internal standard. The residue, dissolved in methanol, was chromatographed on a reversed-phase column with a mobile phase of 60% acetonitrile and 1% acetic acid in water. The sensitivity limit for I, II and III was 50, 25 and 100 ng/ml of plasma, respectively. Compound I in the same plasma extract was also analysed by gas chromatography--electron-impact mass spectrometry. The base peaks m/z 160 for I and m/z 162 for internal standard (IV) were monitored; the sensitivity limit for I was 2.5 ng/ml of plasma. The determination of the metabolites of I, II and its conjugate (V), and isopropyl-hydrogen malonate (VI) in urine by high-performance liquid chromatography is also described. The limit of quantification for VI was 2.0 micrograms/ml, and the overall coefficient of variation of VI was 4.7%. The limit of quantification for II in urine was 0.5 micrograms/ml and that for V was 1.0 micrograms/ml as total II (II + V). The overall precision of the method was satisfactory. The method was used to determine plasma and urine concentrations in four dogs orally dosed with 100, 200 or 400 mg of malotilate.  相似文献   

12.
Afatinib (AFT) is a new tyrosine kinase inhibitor approved for the treatment of nonsmall cell lung cancer. In the present study, a simple, specific, rapid and sensitive liquid chromatography tandem mass‐spectrometric method for the quantification of AFT in human plasma, was developed and validated. Chromatographic separation of the analytes was accomplished on a reversed‐phase Luna®‐PFP 100 Å column (50 × 2.0 mm; 3.0 μm) maintained at ambient temperature. Isocratic elution was carried out using acetonitrile–water (40:60, v/v) containing 10 mm ammonium formate buffer (pH 4.5) adjusted with formic acid at a flow rate of 0.4 mL min?1. The analytes were monitored by electrospray ionization in positive ion multiple reaction monitoring mode. The method yields a linear calibration plot (r2 = 0.9997) from a quantification range of 0.5–500 ng mL?1 with the lower limit of quantification and lower limit of detection of 1.29 and 0.42 ng mL?1, respectively. The intra‐ and inter‐day precision and accuracy were estimated and found to be in the ranges of 1.53–4.11% for precision and ?2.80–0.38% for accuracy. Finally, quantification of afatinib in a metabolic stability study in rat liver microsomes was achieved through the proposed method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
A simple, sensitive and specific liquid chromatography-tandem mass spectrometry method for the quantification of bromopride I in human plasma is presented. Sample preparation consisted of the addition of procainamide II as the internal standard, liquid-liquid extraction in alkaline conditions using hexane-ethyl acetate (1 : 1, v/v) as the extracting solvent, followed by centrifugation, evaporation of the solvent and sample reconstitution in acetonitrile. Both I and II (internal standard, IS) were analyzed using a C18 column and the mobile-phase acetonitrile-water (formic acid 0.1%). The eluted compounds were monitored using electrospray tandem mass spectrometry. The analyses were carried out by multiple reaction monitoring (MRM) using the parent-to-daughter combinations of m/z 344.20 > 271.00 and m/z 236.30 > 163.10. The areas of peaks from analyte and IS were used for quantification of I. The achieved limit of quantification was 1.0 ng/ml and the assay exhibited a linear dynamic range of 1-100.0 ng/ml and gave a correlation coefficient (r) of 0.995 or better. Validation results on linearity, specificity, accuracy, precision and stability, as well as application to the analysis of samples taken up to 24 h after oral administration of 10 mg of I in healthy volunteers demonstrated the applicability to bioequivalence studies.  相似文献   

14.
A selective, sensitive and rapid liquid chromatographic method with electrospray ionization tandem mass spectrometric detection has been developed and validated for simultaneous quantification of sacubitril and valsartan in rat plasma using telmisartan as internal standard (IS). The analytes were extracted by deprotenization of 50 μL of plasma sample using 200 μL of acetonitrile. In a short chromatographic run of 1.50 min run time, separation was achieved on a Hypersil Gold C18 column using a mobile phase composed of 0.1% formic acid in Milli‐Q water–0.1% formic acid in acetonitrile in gradient elution mode. The quantification of target compounds was performed in a positive electrospray ionization mode and multiple reaction monitoring. Response was a linear function of concentration in the ranges of 0.5–20,000 ng/mL for both analytes, with r2 > 0.9997. The intra‐ and inter‐day precision and accuracy results were <15% and acceptable as per US Food and Drug Administration guidelines. Stability of compounds were established in a battery of stability studies, i.e. bench‐top, autosampler and long‐term storage stability as well as freeze–thaw cycles. The validated method can be used as a routine method to support pharmacokinetic studies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
A sensitive and specific liquid chromatography electrospray ionization–mass spectrometry method for determination of 1,4‐dimethylpyridinium (1,4‐DMP) in rat plasma has been developed and validated. Chromatography was performed on an Aquasil C18 analytical column (4.6 × 150 mm, 5 µm, Thermo Scientific, Rockford, IL, USA) with isocratic elution using a mobile phase containing acetonitrile and water with an addition of 0.1% of formic acid. Detection was achieved by an Applied Biosystems MDS Sciex (Concord, Ontario, Canada) API 2000 triple quadrupole mass spectrometer. Electrospray ionization was used for ion production. The limit of detection in the single ion monitoring mode was found to be 10 ng/mL. The limit of quantification was 50 ng/mL. The precision and accuracy for both within‐day and between‐day determination of 1,4‐dimethylpyridinium was 2.4–7.56 and 90.93–111.48%. The results of this analytical method validation allow pharmacokinetic studies to be carried out in rats. The method was used for the pilot study of the pharmacokinetic behavior of 1,4‐DMP in rats after intravenous administration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Dihydrostreptomycin (DHS) is an aminoglycoside antibiotic used in veterinary medicine in combination with benzylpenicillin for the treatment of bacterial infections in cattle, pigs and sheep. A method to determine its residues in edible tissues of cattle, as well as in milk, was developed and validated. Extraction of DHS from the tissues was performed using a liquid extraction with a 10 mM phosphate buffer containing 2% (w/v) trichloroacetic acid, while milk samples were treated with a 50% (w/v) trichloroacetic acid solution, followed by a solid-phase clean-up procedure on a carboxypropyl (CBA) weak cation exchange column. Ion-pair chromatography, using a mixture of 20 mM pentafluoropropionic acid in water and acetonitrile as the mobile phase, was used to retain DHS and the internal standard streptomycin (STR) on a Nucleosil (5 microm) reversed-phase C18 column. The components were detected and quantified by electrospray ionization (ESI) tandem mass spectrometry. The method could be validated according to EC (European Community) requirements with respect to linearity, trueness and precision, the latter evaluated at the maximum residue limit (MRL) - 1000 ng g(-1) for kidney, 500 ng g(-1) for muscle, liver and fat, and 200 ng g(-1) for milk -, at one-half of the MRL and at one and a half times the MRL. A limit of quantification of 10 ng g(-1) and 1 ng ml(-1) was obtained for all tissues and for milk, respectively, which is far below one-half of the MRL as requested, while the limit of detection was in the low ppb range, varying between 1.9 and 4.2 ng g(-1) for the different tissues tested, and being 0.6 ng ml(-1) for milk. The method was used for the monitoring of DHS residues in incurred tissue and milk samples coming from cattle medicated with DHS in combination with benzylpenicillin by intramuscular injection, in order to evaluate withdrawal times.  相似文献   

17.
A new liquid chromatography with tandem mass spectrometry method was developed and validated for the simultaneous determination of trifolirhizin, (–)‐maackiain, (–)‐sophoranone, and 2‐(2,4‐dihydroxyphenyl)‐5,6‐methylenedioxybenzofuran from Sophora tonkinensis in rat plasma using chlorpropamide as an internal standard. Plasma samples (50 μL) were prepared using a simple deproteinization procedure with 150 μL of acetonitrile containing 100 ng/mL of chlorpropamide. Chromatographic separation was carried out on an Acclaim RSLC120 C18 column (2.1 × 100 mm, 2.2 μm) using a gradient elution consisting of 7.5 mM ammonium acetate and acetonitrile containing 0.1% formic acid (0.4 mL/min flow rate, 7.0 min total run time). The detection and quantitation of all analytes were performed in selected reaction monitoring mode under both positive and negative electrospray ionization. This assay was linear over concentration ranges of 50–5000 ng/mL (trifolirhizin), 25–2500 ng/mL ((–)‐maackiain), 5–250 ng/mL ((–)‐sophoranone), and 1–250 ng/mL 2‐(2,4‐dihydroxyphenyl)‐5,6‐methylenedioxybenzofuran) with a lower limit of quantification of 50, 25, 5, and 1 ng/mL for trifolirhizin, (–)‐maackiain, (–)‐sophoranone, and 2‐(2,4‐dihydroxyphenyl)‐5,6‐methylenedioxybenzofuran, respectively. All the validation data, including the specificity, precision, accuracy, recovery, and stability conformed to the acceptance requirements. The results indicated that the developed method is sufficiently reliable for the pharmacokinetic study of the analytes following oral administration of Sophora tonkinensis extract in rats.  相似文献   

18.
A rapid, sensitive and selective liquid chromatography–tandem mass spectrometry method for the detection of tandospirone (TDS) and its active metabolite 1‐[2‐pyrimidyl]‐piperazine (1‐PP) in Sprague–Dawley rat plasma is described. It was employed in a pharmacokinetic study. These analytes and the internal standards were extracted from plasma using protein precipitation with acetonitrile, then separated on a CAPCELL PAK ADME C18 column using a mobile phase of acetonitrile and 5 mm ammonium formate acidified with formic acid (0.1%, v/v) at a total flow rate of 0.4 mL/min. The detection was performed with a tandem mass spectrometer equipped with an electrospray ionization source. The method was validated to quantify the concentration ranges of 1.000–500.0 ng/mL for TDS and 10.00–500.0 ng/mL for 1‐PP. Total time for each chromatograph was 3.0 min. The intra‐day precision was between 1.42 and 6.69% and the accuracy ranged from 95.74 to 110.18% for all analytes. Inter‐day precision and accuracy ranged from 2.47 to 6.02% and from 98.37 to 105.62%, respectively. The lower limits of quantification were 1.000 ng/mL for TDS and 10.00 ng/mL for 1‐PP. This method provided a fast, sensitive and selective analytical tool for quantification of tandospirone and its metabolite 1‐PP in plasma necessary for the pharmacokinetic investigation.  相似文献   

19.
A rapid, simple and sensitive liquid chromatography–tandem mass spectrometry (LC/MS/MS) was developed for the determination of an antiepileptic drug, lacosamide, in rat plasma. The method involves the addition of acetonitrile and internal standard solution to plasma samples, followed by centrifugation. An aliquot of the supernatant was diluted with water and directly injected into the LC/MS/MS system. The separations were performed on column packed with octadecylsilica (5 µm, 2.0 × 50 mm) with 0.1% formic acid and acetonitrile as mobile phase, and the detection was performed on tandem mass spectrometry by the multiple‐reaction monitoring via an electrospray ionization source. The standard curve was linear over the concentration range from 0.3 to 1000 ng/mL. The lower limit of quantification was 0.3 ng/mL using 50 μL of rat plasma sample. The intra‐ and inter‐assay precision and accuracy were found to be less than 11.7 and 8.8%, respectively. The developed analytical method was successfully applied to the pharmacokinetic study of lacosamide in rats. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
An assay based on liquid chromatography/tandem mass spectrometry is presented for the fast, precise and sensitive quantitation of Δ9‐tetrahydrocannabinolic acid A (THCA) in serum. THCA is the biogenetic precursor of Δ9‐tetrahydrocannabinol in cannabis and has aroused interest in the pharmacological and forensic field especially as a potential marker for recent cannabis use. After addition of deuterated THCA, synthesized from D3‐THC as starting material, and protein precipitation, the analytes were separated using gradient elution on a Luna C18 column (150 × 2.0 mm × 5 µm) with 0.1% formic acid and acetonitrile/0.1% formic acid. Data acquisition was performed on a triple quadrupole linear ion trap mass spectrometer in multiple reaction monitoring mode with negative electrospray ionization. After optimization, the following sample preparation procedure was used: 200 μL serum was spiked with internal standard solution and methanol and then precipitated ‘in fractions’ with 500 μL ice‐cold acetonitrile. After storage and centrifugation, the supernatant was evaporated and the residue redissolved in mobile phase. The assay was fully validated according to international guidelines including, for the first time, the assessment of matrix effects and stability experiments. Limit of detection was 0.1 ng/mL, and limit of quantification was 1.0 ng/mL. The method was found to be selective and proved to be linear over a range of 1.0 to 100 ng/mL using a 1/x weighted calibration model with regression coefficients >0.9996. Accuracy and precision data were within the required limits (RSD ≤ 8.6%, bias: 2.4 to 11.4%), extractive yield was greater than 84%. The analytes were stable in serum samples after three freeze/thaw cycles and storage at ?20 °C for one month. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号