首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The present study reports the synthesis of silver nanoparticles (Ag NPs) from silver nitrate solution using leaf extracts of Commiphora caudata. The formation of Ag NPs in the colloidal solution is confirmed by UV–Vis spectroscopy analysis. The identification of biomolecules is analyzed through fourier transform infrared spectroscopy. X-ray diffraction pattern shows that an average particle size of the synthesized nanoparticles are in the range of 40–24 nm. Field emission scanning electron microscopy and transmission electron microscopy confirm the formation Ag NPs in spherical shape. The photoluminescence study of the synthesized Ag NPs interprets the influence of C caudata leaf concentrations on emission behavior. Zeta potential measurement is carried out to determine the stability of synthesized Ag NPs. GC–MS analysis revealed that the C. caudata contained 11 compounds, such as Stigmasterol (24.14 %), Hexacosanoic acid, methyl ester (15.13 %) and 2-bromophenyl morpholine-4-carboxylate (11.71 %). The antibacterial activity of Ag NPs shows that these bio capped Ag NPs have higher inhibitory action for Escherichia coli, Klebsiella pheumoniea, Micrococcus flavus, Pseudomonas aeruginosa, Bacillus subtilis, Bacillus pumilus, Staphylococcus aureus.  相似文献   

2.
New biologically active silver nanocomposites based on the copolymer of lup-20(29)-ene-3,28-diol 28-O-vinylbenzoate with N-vinylpyrrolidone were prepared by the borohydride method. The formation of spherical nanoparticles with a mean diameter of 67 nm was confirmed by scanning electron microscopy. The synthesized copolymers and silver nanocomposites exhibit cytotoxic activity and show promise for the development of new materials for medical purposes.  相似文献   

3.
Lateral diffusion of diblock copolymer residing on the interfaces between two immiscible liquids is investigated at single molecular level. Fluorescence correlation spectroscopy was used to study the diffusion of fluorescence-labeled diblock copolymer, polystyrene-b-polyisoprene, at the interface formed between two immiscible liquids. The interfaces are formed between N,N-dimethylformamide (DMF) and a few immiscible liquids, n-alkane and polyisoprene. Interfacial diffusion coefficient of the diblock copolymer probe is found to decrease monotonously with the increase of the molecular length of the interface constituting liquids. The decrease of diffusion coefficient follows the prediction by Einstein relation using the viscosity of the constituting liquids as the variables only for interfaces between DMF and very small n-alkanes. For interfaces formed between DMF and bigger alkanes and especially between DMF and polyisoprene, the diffusion coefficient is much higher than the calculated value, indicating that the probe molecule starts to probe the much less viscous interfacial region because the interfacial width gets larger, whose thickness is comparable to the molecule size of the liquids.  相似文献   

4.
Copolymers of benzidine and o-phenylenediamine/kaolinite clay composites with different percentages of kaolinite clay particles were synthesized via in situ oxidative copolymerization. The spectral characteristics upon incorporation of o-phenylenediamine units into the polybenzidine backbone in presence of kaolinite clay were investigated by means of UV–Vis and FTIR spectroscopy. The copolymer in the absence and in the presence of kaolinite clay was studied by thermal gravimetric analysis under non-oxidative conditions. The morphology of the copolymer kaolinite composites system was investigated by the scanning electron microscopy.  相似文献   

5.
Full polysaccharide crosslinked-chitosan membranes were prepared by crosslinking of chitosan with chitosan dialdehyde followed by reduction with sodium borohydride. Partially oxidized chitosan, generated from periodate oxidation of chitosan, was used as a crosslinker. The modulus values and elongation at break were increased with increasing the crosslinker weight ratio. The rheological measurements showed that depolymerization of chitosan can take place rapidly in the presence of the oxidizing agent. The weight reduction of crosslinked-chitosan membrane after 12 h, at pH = 4 and pH = 2 was found to be 85.0% and 90.0%, respectively. The structure of the crosslinked-chitosan and the silver nanocomposite were confirmed by FTIR spectroscopy, scanning electron microscopy(SEM), and thermogravimetric analysis(TGA). Transmission electron microscopy(TEM) reveals the presence of well-separated Ag nanoparticles with diameters in the range of 4–10 nm. The silver ion loading increases with increasing the silver ion concentration, and decreasing the crosslink density. The MBC/MIC ratio of 2.0, 2.0, and 1.0 was achieved for E. coli, S. aureus, and P. aeruginosa, respectively.  相似文献   

6.
The voltammetry of microparticles (VMP) methodology was used to characterize the biological attack of different bacteria and fungi to reconstructed egg tempera and egg–linseed oil emulsion paint films containing cadmium yellow (CdS), which mimic historical painting techniques. When these paint films are in contact with aqueous acetate buffer, different cathodic signals are observed. As a result of the crossing of VMP data with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), scanning electrochemical microscopy (SECM), field emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM), these voltammetric signals can be associated with the reduction of CdS and different complexes associated to the proteinaceous and fatty acid fractions of the binders. After biological attack with different fungi (Acremonium chrysogenum, Aspergillus niger, Mucor rouxii, Penicillium chrysogenum, and Trichoderma pseudokoningii) and bacteria (Arthrobacter oxydans, Bacillus amyloliquefaciens, and Streptomyces cellulofans), the observed electrochemical signals experience specific modifications depending on the binder and the biological agent, allowing for an electrochemical monitoring of biological attack.  相似文献   

7.
《先进技术聚合物》2018,29(7):2025-2035
A novel silver nanoparticle doped diblock copolymer was synthesized by a 3‐step process via bulk polymerization process under nitrogen atmosphere. The above prepared polymer is characterized by FTIR spectroscopy, fluorescence emission spectroscopy, circular dichroism (CD), HRTEM, and FESEM. The sulphamicacid end capped poly(ε‐caprolactone) (P1) system exhibited higher tensile strength than the sulphamicacid bridged diblock copolymer (P2) and nano Ag doped sulphamicacid bridged diblock copolymer (P3) systems. The splinting activity of the diblock copolymers was tested and confirmed the low temperature splinting activity of the diblock copolymer. The Ag nanoparticle catalyzed catalytic reduction of p‐nitrophenol (NiP) was tested, and the apparent rate constant (kapp) was determined as 7.36 × 10−3 sec−1. The thermal studies were carried out by DSC and TGA methods. The TGA study declared that the P1 system has higher degradation temperature than the P2 and P3 systems. The P1 system has higher melting temperature (Tm) (75.5°C) than the P2 and P3 systems. The CD study indicated that the conformation of sulphamicacid was not changed even after the formation of nano Ag doped sulphamicacid bridged diblock copolymer.  相似文献   

8.
Polyimide/silver composite films were successfully prepared by in situ polymerization. A precursor, AgNO3 was used as the source of the silver nanoparticles. The structure and morphology of resulting films were characterized by FTIR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Consequently, the silver nanoparticles were well dispersed in polyimide matrix. Meanwhile, thermal properties from thermal gravimetric analyses (TGA) and mechanical properties from tensile test which confirmed composites were kept good performance as compared to pure polyimide. In addition, the antimicrobial activity of polyimide/silver composite films against three different bacteria, B. subtilis, S. aureus, and E. coil, illustrated excellent activity. This composite is potential useful as antimicrobial material with good thermal performance in a wide variety of biomedical and general use applications.  相似文献   

9.
The use..... of aqueous leaf extract of Lavandula × intermedia for biosynthesis of silver nanoparticles (AgNPs) is presented. The plant extract was obtained by boiling dried leaves and using the obtained filtrate for the synthesis of AgNPs. The study was conducted to investigate an ecofriendly approach to metal nanoparticle synthesis and to evaluate the antimicrobial potential of both the aqueous plant extract and resulting silver nanoparticles against different microbes using the disc diffusion method. The synthesis of silver nanoparticles was monitored using ultraviolet–visible (UV–v is) spectroscopy, which showed a localized surface plasmon resonance band at 411 nm and a shift of the band to higher wavenumber of 422 nm after 90 min of reaction. Powder X-ray diffraction analysis and transmission electron microscopy of the obtained AgNPs revealed their crystalline nature, with average size of 12.6 nm. Presence of elemental silver was further confirmed by energy-dispersive X-ray spectroscopy. Fourier-transform infrared spectroscopy confirmed presence of phytochemicals from Lavandula × intermedia leaf extract on the AgNPs. The AgNPs showed good antimicrobial activity with inhibition zone ranging from 10 to 23 mm; the largest inhibition zone (23 mm) occurred against Escherichia coli. Generally, the AgNPs displayed more antimicrobial activity against all investigated pathogens compared with Lavandula × intermedia leaf extract, and were also more active than streptomycin against Klebsiella oxytoca and E. coli at the same concentration. The silver nanoparticles showed prominent antimicrobial activity with a lowest minimum inhibitory concentration (MIC) value of 15 μg/mL against E. coli, K. oxytoca, and Candida albicans.  相似文献   

10.
Citric acid was used as the cross-linker to prepare the sustainable wood starch nanocomposites (WSNC) from the renewable resources like starch and soft wood flour using water as the solvent. Nano SiO2 was employed to develop the physicochemical properties of the WSNC via a green path. In this process, starch was grafted with methylmethacrylate (MMA) and SiO2 was modified with N-cetyl-N,N,N-trimethyl ammonium bromide. Three different percentage of modified nano SiO2 (1–5 phr) were employed in the preparation of the composites and their properties were characterized by Fourier transform infrared spectroscopy. The morphological features of the composites were investigated through transmission electron microscopy and scanning electron microscopy study. Mechanical and dynamic mechanical properties like storage modulus, loss factors and tan δ value of the composites were thoroughly investigated. Thermal stability, water resistance and flammability of the composites were significantly improved after incorporation of modified SiO2. The maximum improvements in properties were achieved containing 3 phr modified SiO2 composites.  相似文献   

11.
We report a facile, cost effective, and environmentally friendly green chemistry method for preparing silver nanoparticles (AgNPs) using Rubus crataegifolius bge (RCB) fruit extract. The amount of the fruit extract used was found to be important parameters in the growth of AgNPs. In this study, the effect of RCB fruit extract on the synthesis of AgNPs was studied using UV–Vis spectroscopy, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction (XRD), and dynamic light scattering analyses were performed to characterize the RCB fruit extract-stabilized AgNPs. The formation of the AgNPs was confirmed by the color change of the reaction medium and the absorbance peak observed at 420 nm. The XRD analysis confirmed the face centered cubic structure of the AgNPs. The catalytic property of the as-synthesized AgNPs was analyzed for the reduction of 4-nitrophenol to 4-aminophenol.  相似文献   

12.
The doubly thermo-responsive triblock copolymer nanoparticles of polystyrene-block-poly(N-isopropylacrylamide)-block-poly[N,N-(dimethylamino) ethyl methacrylate] (PS-b-PNIPAM-b-PDMAEMA) are successfully prepared through the seeded RAFT polymerization in situ by using the PS-b-PNIPAM-TTC diblock copolymer nanoparticles as the seed. The seeded RAFT polymerization undergoes a pseudo-first-order kinetics procedure, and the molecular weight increases with the monomer conversion linearly. The hydrodynamic diameter (D h) of the triblock copolymer nanoparticles increases with the extension of the PDMAEMA block. In addition, the double thermo-response behavior of the PS-b-PNIPAM-b-PDMAEMA nanoparticles is detected by turbidity analysis, temperature-dependent 1H-NMR analysis, and DLS analysis. The seeded RAFT polymerization is believed as a valid method to prepare triblock copolymer nanoparticles containing two thermo-responsive blocks.  相似文献   

13.
A kind of amphiphilic rod-coil diblock copolymer consisting both of tetraaniline (TAni) and polyethylene glycol (PEG) blocks, TAni-b-PEG, was synthesized. The diblock copolymer shows excellent electrochromic properties, especially, in switching time and coloration efficiency compared with tetraaniline. TAni-b-PEG is able to self-assemble into spherical structure, which is attributed to the formation of conducting channels and increase of ion-exchange capacity of TAni-b-PEG, implying that a block copolymer with electrochromic block and high ionic conductive block simultaneously possesses improving electrochromic properties.  相似文献   

14.
There exists a complex and multifactorial relationship between diabetes and cardiovascular disease. Hyperglycemia is an important factor imposing damage (glucose toxicity) on cardiac cell leading to diabetic cardiomyopathy. There are substantial clinical evidences on the adverse effects of conventional therapies in the prevention/treatment of diabetic cardiovascular complications. Currently, green-synthesized nanoparticles have emerged as a safe, efficient, and inexpensive alternative for therapeutic uses. The present study discloses the silver nanoparticle biosynthesizing capability and cardioprotective potential of Syzygium cumini seeds already reported to have antidiabetic properties. Newly generated silver nanoparticles S. cumini MSE silver nanoparticles (SmSNPs) were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), zeta sizer, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Using methanolic extract of S. cumini seeds, an average size of 40–100-nm nanoparticles with 43.02 nm and ?19.6 mV zeta potential were synthesized. The crystalline nature of SmSNPs was identified by using XRD. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) assays revealed the antioxidative potential to be 66.87 (±0.7) % and 86.07 (±0.92) % compared to 60.29 (±0.02) % and 85.67 (±1.27) % for S. cumini MSE. In vitro study on glucose-stressed H9C2 cardiac cells showed restoration in cell size, nuclear morphology, and lipid peroxide formation upon treatment of SmSNPs. Our findings concluded that S. cumini MSE SmSNPs significantly suppress the glucose-induced cardiac stress in vitro by maintaining the cellular integrity and reducing the oxidative damages therefore establishing its therapeutic potential in diabetic cardiomyopathy.  相似文献   

15.
In this work, a facile biogenic route for the synthesis of silver nanoparticles (AgNPs) is reported. The aqueous extract of Areca catechu (A. catechu) nuts are used as reducing source. The synthesized AgNPs characterized by UV–Visible (UV–Vis) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and high resolution transmission electron microscopy (HR-TEM) with energy dispersive spectrum (EDS) analysis. The formations of AgNPs are identified from the appearance of yellow color and the surface plasmon resonance absorbance peak between 407 and 437 nm. The FT-IR results exposed that the active biomolecules of A. catechu are responsible for capping of AgNPs. The synthesized AgNPs are distorted spherical shape with 45 nm of size, identified from the HR-TEM. In application, the electrocatalytic activity of AgNPs is analyzed towards glucose oxidation using cyclic voltammetry. The results showed that A. catechu derived AgNPs act as good electrocatalyst than bare bulk silver and glassy carbon electrodes.  相似文献   

16.
In this study, nano silver-doped activated carbon (Ag/C) acted as an inorganic additive and was blended with a polysulfone (PSF) matrix in a tetrahydrofuran (THF) solution, thereby forming nano silver- doped activated carbon/polysulfone (Ag/C/PSF) composites. Subsequently, the silver content and characterization of the Ag/C were identified using energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The FTIR, XRD, EDS and SEM were used to characterize the structure and morphology of the Ag/C/PSF composites. The FTIR spectra analysis revealed that adding a small volume of Ag/C in a PSF matrix did not substantially affect the functional groups of the matrix. The XRD results showed that the characteristic crystallization peaks of Ag/C/PSF (2θ = 26°) increased as the Ag/C content increased. The EDS results revealed that silver elements were inlaid into Ag/C/PSF composites, and the SEM results demonstrated strong interfacial interaction between the Ag/C particles and PSF matrix. The results of thermogravimetric analysis and differential scanning calorimetry appeared that adding Ag/C particles increased the thermal decomposition temperature and glass transition temperature of the Ag/C/PSF composites. From a stress–strain analysis, the added Ag/C particles enhanced the tensile strength of the PSF matrix. The results of contact-angle and atomic-force microscopy measuring showed that the hydrophobicity and surface roughness increased when Ag/C content increased. The antibacterial test results revealed that the Ag/C/PSF composites exhibited excellent antibacterial activity against both Staphylococcus aureus and Escherichia coli. In addition, the electrical conductivity measurements showed that volume resistivity of the Ag/C/PSF composites decreased with the amount of Ag/C increase.  相似文献   

17.
The preparation of polyolefin‐based stereoregular diblock copolymers by postpolymerization of ethenyl‐capped syndiotactic polypropylene‐based propylene/norbornene copolymer (sPP‐based P‐N copolymer) led to the successful generation of a structurally uniform stereoregular diblock copolymer for self‐assembly studies. The ethenyl‐capped prepolymer was prepared by conducting propylene/norbornene copolymerization in the presence of Me2C(Cp)(Flu)ZrCl2/MAO. Ozonolysis of ethenyl‐capped sPP‐based P‐N copolymer provided the formyl group end‐capped, end‐functionalized prepolymer with a quantitative functional group conversion ratio. Subsequently, connecting the formyl end‐group of the stereoregular prepolymer by coupling with living anionic polystyrene resulted in the high yield production of stereoregular diblock copolymer (sPP‐based P‐N‐block‐polystyrene), which is difficult to prepare by other methods. The resulting stereoregular diblock copolymer possesses precise chemical architecture to self‐organize into consistent nanostructures as evidenced by transmission electron microscopy and small angle X‐ray scattering. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4843–4856, 2008  相似文献   

18.
In this study, silver nanoparticles (AgNPs) were biosynthesized using Stachys lavandulifolia and Lathyrus sp. The first sign of the reduction of silver ions to AgNPs was the change in color of S. lavandulifolia and Lathyrus sp. extracts changed into dark brown and auburn after treating with silver nitrate, respectively. The UV–Vis spectroscopy of reaction mixture (extract+silver nitrate) produced by S. lavandulifolia and Lathyrus sp. showed the strong adsorption peaks at ?440 and 420 nm, respectively. The transmission electron microscope images showed the synthesis of AgNPs using S. lavandulifolia and Lathyrus sp. with an average size of 7 and 11 nm, respectively. The result of X-ray diffraction pattern showed four diffraction peaks at 38°, 44°, 64°, and 77° for both types of biosynthesized AgNPs. Fourier transform infrared spectroscopy showed the possible role of involved proteins and polyhydroxyl functional groups in the synthesis process of AgNPs. Inductively coupled plasma analysis determined the conversion rate (percentage) of silver ions to silver nanoparticles in reaction mixtures of S. lavandulifolia and Lathyrus sp. 99.73 and 99.67 %, respectively. In addition, antifungal effect of AgNPs, synthesized by both extracts, was studied separately on mycelial growth of Dothiorella sarmentorum, in a completely randomized design on potato dextrose agar (PDA) medium. The inhibition rate of mycelial growth was strongly depended on the density of AgNPs and it strongly increased with increasing the density of AgNPs in the PDA medium. AgNPs more than 90 % of them inhibited from the mycelia growth of the fungus at the concentration of 40 µg/mL and higher.  相似文献   

19.
张杰 《高分子科学》2016,34(8):1001-1013
In this article, crystalline morphology and molecular orientation of isotactic polypropylene (iPP), random copolymerized polypropylene (co-PP) and β-nucleating agent (β-NA) composites prepared by pressure vibration injection molding (PVIM) have been investigated via polarized light microscopy, scanning electron microscopy, wide-angle X-ray diffraction and differential scanning calorimetry. Results demonstrated that the interaction between co-PP and iPP molecular chains was beneficial for the mechanical improvement and the introduction of β-NA further improved the toughness of iPP. In addition, after applying the pressure vibration injection molding (PVIM) technology, the shear layer thickness increased remarkably and the tensile strength improved consequently. Thus, the strength and toughness of iPP/co-PP/β-NA composites prepared by PVIM were simultaneously improved compared to those of the pure iPP prepared by conventional injection molding (CIM): the impact toughness was increased by five times and tensile strength was increased by 9 MPa. This work provided a new method to further enhance the properties of iPP/co-PP composites through dynamic processing strategy.  相似文献   

20.
Copolymer microgels based on N-isopropylacrylamide (NIPAM) and methacrylic acid (MAA) have been synthesized by free radical emulsion polymerization using N,N-methylenebisacrylamide (BIS) as a cross-linker. Synthesized microgels were characterized by Fourier transform infrared spectroscopy (FTIR). Then silver nanoparticles were fabricated in the synthesized microgels by in-situ reduction of AgNO3 with NaBH4. The formation of silver nanoparticles was confirmed by UV–Vis spectroscopy. The pH sensitivity of the copolymer microgels was investigated using dynamic light scattering technique (DLS). Hydrodynamic radius of P (NIPAM–MAA) microgels increases with increase in pH of the medium at 25°C. Surface plasmon resonance wavelength (λSPR) of silver nanoparticles increases with increase in hydrodynamic radius due to change in pH of the medium. The catalytic activity for the reduction of nitrobenzene (NB), an environmental pollutant, into aniline was investigated by UV–Vis spectroscopy in excess of NaBH4 using hybrid microgels as catalyst. The value of apparent rate constant (kapp) of the reaction was calculated using pseudo first order kinetic model and it was found to be linearly related to the amount of catalyst. The results were compared with literature data. The system was found to be an effective catalyst for conversion of NB into aniline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号