共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
《Tetrahedron: Asymmetry》2007,18(17):2049-2054
New efficient catalyst systems, coupled with IrCl(COD)PPh3 and chiral [SNNS]-type ligands, were employed in the asymmetric transfer hydrogenation of aromatic ketones under mild reaction conditions. The corresponding optically active alcohols were obtained in high yield and good to excellent enantioselectivities (up to 96% ee). The chiral Ir(I) complexes with the ligands of [SNNS]-type were also prepared and characterized, which showed good enantioselectivity and high activity. The reactions can be performed in air and the catalytic experiments are greatly simplified. 相似文献
3.
4.
Asymmetric transfer hydrogenation of various simple aromatic ketones by the Ru-TsDPEN catalyst was shown to be feasible in aqueous HCOONa without calling for any catalyst modification, furnishing ee's of up to 95% and significantly faster rates than in the HCOOH-NEt(3) azeotrope. 相似文献
5.
Helen L. Ngo 《Tetrahedron letters》2005,46(4):595-597
Polar bisphosphonic acid-derived Ru(BINAP)(DPEN)Cl2 precatalysts were synthesized and immobilized in room temperature ionic liquids (RTILs) for asymmetric hydrogenation of aromatic ketones with ee values of up to 98.7%. The performance of the Ru catalysts is highly dependent on the nature of imidazolium ILs. For the imidazolium ILs without acidic protons, both ILs and Ru catalysts were recycled by simple extraction and reused. Such a simple immobilization approach also prevented the leaching of Ru (and Ru catalysts) into the chiral secondary alcohol products, and should prove desirable for the production of pharmaceutical intermediates that are free from metal contaminants. 相似文献
6.
Tang S Jin R Zhang H Yao H Zhuang J Liu G Li H 《Chemical communications (Cambridge, England)》2012,48(50):6286-6288
A bifuctional heterogeneous chiral rhodium catalyst exhibited excellent catalytic activity and enantioselectivity in asymmetric transfer hydrogenation of aromatic ketones and their analogues in aqueous medium, which could be recovered easily and used repetitively without affecting obviously its enantioselectivity. 相似文献
7.
Highly efficient and recyclable heterogeneous asymmetric transfer hydrogenation of ketones in water 总被引:3,自引:0,他引:3
A highly efficient heterogeneous asymmetric transfer hydrogenation of ketones in water was developed for the first time, which exhibited excellent enantioselectivities, distinct acceleration effect and remarkably high recyclabilities. 相似文献
8.
Yan Xing 《Tetrahedron letters》2006,47(26):4501-4503
Chiral PNNP ligand II and [IrHCl2(COD)]2 were applied for the first time in the asymmetric transfer hydrogenation of aromatic ketones with HCOONa in water, giving the corresponding optical alcohols in high yield and excellent enantioselectivity (up to 99% ee). Particularly, the reduction of propiophenone proceeded smoothly at a substrate to catalyst molar ratio of 8000, without compromising the ee values obtained. 相似文献
9.
[reaction: see text] Catalytic systems generated in situ from the chiral PNNP ligands with iridium or rhodium hydride complexes exhibited excellent catalytic activity and good enantioselectivity in the asymmetric transfer hydrogenation of aromatic ketones without added base. The best result was obtained in the IrH(CO)(PPh(3))(3)-ligand 2 catalytic system with up to 99% yield and 97% ee. 相似文献
10.
Magnetically recoverable chiral catalysts immobilized on magnetite nanoparticles for asymmetric hydrogenation of aromatic ketones 总被引:1,自引:0,他引:1
Novel heterogenized asymmetric catalysts were synthesized by immobilizing preformed Ru catalysts on magnetite nanoparticles via the phosphonate functionality and were characterized by a variety of techniques, including TEM, magnetization, and XRD. These nanoparticle-supported chiral catalysts were used for enantioselective heterogeneous asymmetric hydrogenation of aromatic ketones with very high enantiomeric excess values of up to 98.0%. The immobilized catalysts were easily recycled by magnetic decantation and reused for up to 14 times without loss of activity and enantioselectivity. Orthogonal nature of the present catalyst immobilization approach should allow the design of other superparamagnetic nanoparticle-supported asymmetric catalysts for a wide range of organic transformations. 相似文献
11.
手性多孔有机聚合物具有较高的稳定性和催化活性,广泛用于多相不对称催化中.目前研究多集中在合成具有微孔结构的聚合物,而少有具有多种孔道结构(包含介孔和微孔)的聚合物的报道.之前我们报道了乙烯基修饰的BINAP配体,(S)-5,5'-divinyl-BINAP,将其与不同单体共聚后得到了一系列具有不同孔结构的有机聚合物.其负载的Rh基催化剂在苯乙烯不对称氢甲酰化反应中,表现出比均相更高的产物对映体选择性.本文采用不同的溴代步骤,合成了(S)-4,4'-divinyl-BINAP配体.将这两种具有乙烯基官能团的手性配体按相同的摩尔比与二乙烯基苯(DVB)共聚,得到两种不同的有机聚合物.负载[RuCl2(benzene)]2后,分别得到Ru/4-BINAP@POPs和Ru/5-BINAP@POPs-1.采用一锅法合成了催化剂Ru/5-BINAP@POPs-2;以[RuCl2(p-cyme)]2和RuCl3分别合成了Ru/5-BINAP@POPs-3和Ru/5-BINAP@POPs-4催化剂.N2物理吸附结果显示,Ru/4-BINAP@POPs和Ru/5-BINAP@POPs-1催化剂具有相似的孔道结构;而采用一锅法合成的Ru/5-BINAP@POPs-2催化剂的介孔孔径较大.4-BINAP@POPs和5-BINAP@POPs聚合物的13C核磁显示,其均在145,137和128 ppm处有明显的吸收峰,可归结为萘环和苯环上的碳振动峰;在44.0 ppm处的峰归属为亚甲基上的碳振动峰;31P核磁显示,在聚合物中P基本没有被氧化.将所得到的Ru/POPs催化剂应用于乙酰乙酸甲酯的多相不对称加氢反应中,Ru/5-BINAP@POPs-1催化剂具有与Ru/4-BINAP@POPs更快的反应速率.在相同反应条件下,催化剂活性大小为Ru/5-BINAP@POPs-1>Ru/5-BINAP@POPs-3>Ru/5-BINAP@POPs-4>Ru/5-BINAP@POPs-2.另外Ru/5-BINAP@POPs-1催化剂对β-酮酸酯有着较好的底物适应性,且在釜式反应中可循环使用6次而活性基本不变.分析发现,使用前后的催化剂均没有明显的Ru–Ru键的存在.表明Ru金属高度分散于催化剂上,且具有较高的稳定性,金属不易聚集,这也是其具有高活性和稳定性的原因. 相似文献
12.
trans-RuCl(2)[(R)-xylbinap][(R)-daipen] or the S,S complex acts as an efficient catalyst for asymmetric hydrogenation of hetero-aromatic ketones. The hydrogenation proceeds with a substrate-to-catalyst molar ratio of 1000-40000 to give chiral alcohols in high ee and high yield. The enantioselectivity appears to be little affected by the properties of the hetero-aromatic ring. This method allows for asymmetric synthesis of duloxetine, an inhibitor of serotonin and norepinephrine uptake carriers. 相似文献
13.
[reaction: see text]. A novel catalytic system for asymmetric hydrogenation of functionalized ketones has been developed using a Pd/bisphosphine complex as the catalyst in 2,2,2-trifluoroethanol. The reaction exhibits high enantioselectivity, and up to 92.2% ee was obtained. 相似文献
14.
A practical method for the synthesis of optically active aromatic epoxides has been developed via the formation of optically active α-chlorinated alcohols and intramolecular etherification. Optically active alcohols with up to 99% ee can be obtained from the asymmetric reduction of aromatic ketones with a substrate/catalyst ratio of 1000-5000 using a formic acid/triethylamine mixture containing a well-defined chiral Rh complex, Cp*RhCl[(R,R)-Tsdpen]. The asymmetric reduction of α-chlorinated aromatic ketones with a chiral Rh catalyst is characterized by a rapid and carbonyl group-selective transformation because of the coordinatively saturated nature of diamine-based Cp*Rh(III) hydride complexes. The outcome of the reduction is significantly influenced by the structures of the ketonic substrates as well as the hydrogen source such as formic acid or 2-propanol. Commercially available reagents and solvents can be used in this reaction without special purification. This epoxide synthetic process in either a one- or two-pot procedure is practical and particularly useful for the large-scale production of optically active styrene oxides from α-chlorinated ketones. 相似文献
15.
Alonso DA Nordin SJ Roth P Tarnai T Andersson PG Thommen M Pittelkow U 《The Journal of organic chemistry》2000,65(10):3116-3122
2-Azanorbornyl-derived amino alcohols were prepared and evaluated as ligands in the Ru(II)-catalyzed asymmetric transfer hydrogenation of aromatic ketones. To improve selectivity and rate, the structure of the ligand was optimized. Acetophenone was reduced using 0.5 mol % catalyst in 40 min in 94% ee. This system was also able to reduce a wide range of aromatic ketones to the corresponding alcohols, while maintaining high enantioselectivities and yields. The effects of catalyst loading and the presence of cosolvents in the reaction vessel were examined, and a linearity study was also done. 相似文献
16.
A Rh(III) complex generated in situ from [Cp*RhCl2]2 and (1R,2R)-N-(p-toluenesulfonyl)-1,2-cyclohexanediamine (TsCYDN) serves as a remarkably effective, robust catalyst for the asymmetric transfer hydrogenation of aromatic ketones by HCOONa in water in air, affording alcohols in up to 99% ee. 相似文献
17.
The asymmetric transfer hydrogenation (ATH) of a wide range of ketones catalyzed by manganese complex as well as chiral PxNy-type ligand under mild conditions was investigated. Using 2-propanol as hydrogen source, various ketones could be enantioselectively hydrogenated by combining cheap, readily available [MnBr(CO)5] with chiral, 22-membered macrocyclic ligand (R,R,R',R')-CyP2N4 (L5) with 2 mol% of catalyst loading, affording highly valuable chiral alcohols with up to 95% ee. 相似文献
18.
A new polyethylene glycol‐supported chiral monosulfonamide was synthesized from (R,R)‐1,2‐diaminocyclohexane and shown to act as a ligand for ruthenium(II)‐catalyzed asymmetric transfer hydrogenation of aromatic ketones in neat water using sodium formate as the hydrogen source. Good enantioselectivities were obtained and the catalyst could be easily separated from the reaction mixture and reused several times. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
19.
Baratta W Ballico M Del Zotto A Siega K Magnolia S Rigo P 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(8):2557-2563
The osmium compound trans,cis-[OsCl2(PPh3)2(Pyme)] (1) (Pyme=1-(pyridin-2-yl)methanamine), obtained from [OsCl2(PPh3)3] and Pyme, thermally isomerizes to cis,cis-[OsCl2(PPh3)(2)(Pyme)] (2) in mesitylene at 150 degrees C. Reaction of [OsCl2(PPh3)3] with Ph2P(CH2)(4)PPh2 (dppb) and Pyme in mesitylene (150 degrees C, 4 h) leads to a mixture of trans-[OsCl2(dppb)(Pyme)] (3) and cis-[OsCl2(dppb)(Pyme)] (4) in about an 1:3 molar ratio. The complex trans-[OsCl2(dppb)(Pyet)] (5) (Pyet=2-(pyridin-2-yl)ethanamine) is formed by reaction of [OsCl2(PPh3)3] with dppb and Pyet in toluene at reflux. Compounds 1, 2, 5 and the mixture of isomers 3/4 efficiently catalyze the transfer hydrogenation (TH) of different ketones in refluxing 2-propanol and in the presence of NaOiPr (2.0 mol %). Interestingly, 3/4 has been proven to reduce different ketones (even bulky) by means of TH with a remarkably high turnover frequency (TOF up to 5.7 x 10(5) h(-1)) and at very low loading (0.05-0.001 mol %). The system 3/4 also efficiently catalyzes the hydrogenation of many ketones (H2, 5.0 atm) in ethanol with KOtBu (2.0 mol %) at 70 degrees C (TOF up to 1.5 x 10(4) h(-1)). The in-situ-generated catalysts prepared by the reaction of [OsCl2(PPh3)3] with Josiphos diphosphanes and (+/-)-1-alkyl-substituted Pyme ligands, promote the enantioselective TH of different ketones with 91-96 % ee (ee=enantiomeric excess) and with a TOF of up to 1.9 x 10(4) h(-1) at 60 degrees C. 相似文献
20.
《Tetrahedron: Asymmetry》2004,15(14):2101-2111
This review reports the recent developments in the field of asymmetric hydrogenation in the presence of metal catalysts containing monodentate phosphorus ligands. Besides monophosphines, that have been used at the origin of asymmetric hydrogenation, it mainly includes the use of monophosphites and monophosphoramidites, which when associated to rhodium precursors have recently led to very efficient enantioselective catalytic systems. 相似文献