首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
随着我国技术经济水平的提高,电子商务产业快速发展,货运动车组应运而生。采用有限体积方法和重叠网格方法,以及SST k-ω高雷诺数湍流模型,数值模拟研究时速350 km的货运动车组在隧道内交会的压力波,探究货运动车组车体结构即装载门凹陷对隧道内交会压力波的影响。实车试验结果验证了本文数值模拟方法的准确性。研究结果表明,凹陷的装载门使平直车身处的最大正压值增大约20%~30%,且有无凹陷的装载门中心最大正压值的差异百分比维持在35%~80%,最大负压值差异百分比在20%~25%。  相似文献   

2.
在某铁路特大桥声屏障试验段,布置超低压压力传感器阵列,采用自主研发的压力采集系统,测试获得了CRH3动车组以时速300km/h~350km/h往返行驶进出声屏障时的压力时程曲线。采用双线性插值方式,得到了压力传感器阵列布置区域的动态压力场。通过测试得到了压力场高低压区的形状、相对于声屏障的位置、高低压区的距离间隔等。分析了头波和尾波最大正、负压力值的差异。基于头波和尾波的压力场,得到压力场的最大正、负压力值与车速的平方近似成线性关系。研究结果可为声屏障的结构设计提供基础载荷数据。  相似文献   

3.
为研究鱼体摆尾时压力场分布特征及其游泳动力的形成过程,本文以拉萨裸裂尻幼鱼为研究对象,利用粒子图像测速技术(PIV)获得幼鱼在自由游泳摆尾的压力分布规律。结果表明:幼鱼需要借助尾鳍的摆动来形成射流推动鱼体前进,沿着尾部轮廓的凹陷处流体压力为负值,正压则沿着尾部轮廓的凸起处分布;拉萨裸裂尻幼鱼的整个摆尾过程可分为"S"形(T=0~50ms)、"C"形(T=50~150ms)和"C"形回摆(T=150~400ms)三个阶段。"S"形阶段,正压区合力F随时间T先减小后增大,负压区合力F随时间T先增大后减小,正压区和负压区的合力F分布范围为0.88~1.03mN/BL、-0.86~-0.38mN/BL;"C"形阶段,正压区和负压区的合力F分别逐渐增大至3.45mN/BL、-1.62mN/BL;"C"形回摆阶段,正压区和负压区的合力F分别逐渐减小至-0.43mN/BL、1.63mN/BL。  相似文献   

4.
在输水工程中,由于地形、地质等因素的限制,分叉型结构管道得以广泛推广和应用,分叉结构输水管道泄漏是国内外学者非常关注的一个重要问题,而瞬变流法是目前高效、精确且快速的泄漏检测方法之一。基于此,本研究构建了含分叉结构输水管道的瞬变流模型,探究了影响阀门末端压力变化的因素。结果表明,压力曲线的差异性随分叉管长度的增加而增大;压力曲线的衰减速率随阀门关闭时间的增加而变慢;泄漏量对压力曲线变化周期影响不大,但随着泄漏量增大,压力曲线的面积积分变小;泄漏位置不同,压力曲线在幅值处的形状不同,当泄漏位置位于管道上半段时,曲线在幅值处会凸起,当位于管道下半段时,曲线在幅值处会出现凹陷的趋势。  相似文献   

5.
高速列车通过隧道时,隧道内空气会产生较大的压力波动,对列车行车安全、车辆结构以及乘客舒适度造成影响。为研究高速列车进隧道时压力波与列车编组长度的关系,开展了高速列车进隧道压力波特性的CFD仿真分析。采用求解低速流动的压力修正算法求解RANS方程,湍流模型采用可实现k-ε模型。首先,通过与动模型实验监测的压力波对比,验证了数值模型的准确性。随后,对高速列车不同编组进隧道的情况进行了仿真计算,通过监测隧道壁和车体表面压力波随时间的变化,得到压力波大小与编组长度之间的关系。计算结果表明,随着编组长度增大,压力波幅值也增大,且由车身与隧道内空气摩擦引起的压力波幅值增量与编组长度呈线性关系。在此基础上,改进了预测列车进隧道最大压力波的经验公式,考虑了编组长度对压力波的贡献,预测结果更加准确。  相似文献   

6.
安永林  彭立敏  赵丹 《力学学报》2007,15(5):689-693
为了研究各因素在盾构法施工中对地表沉降的影响程度,基于敏感性分析原理,针对一地铁盾构实例,选取土体弹性模量、土仓压力、地下水等3个影响地表沉降的因素,通过变化某一基准参数,让其余影响因素固定,分析研究了盾构施工引起地表沉降对各因素的敏感性。结果如下:弹性模量提高10%时,地表累积最大沉降量可减小15%~20%;在地下水存在的情况下,地表沉降显著增大;而对于砂性土而言,土仓压力越高地表沉降值略有增加。研究结果表明:地表沉降对穿越地层的弹性模量和地下水比较敏感,而对土仓压力敏感性较小。  相似文献   

7.
许晓元  孙金华  刘晅亚 《爆炸与冲击》2021,41(4):045401-1-045401-11
为了研究具有体积分数梯度的连通装置内甲烷-空气爆炸特性,以60 L圆柱体容器和20 L圆柱体容器通过3 m长,截面为0.035 m×0.035 m的方形管道而连接形成的容器管道连通装置作为研究对象,利用Fluidyn软件对均一体积分数的连通装置以及具有体积分数梯度的连通装置中甲烷-空气爆炸的特性进行了数值模拟。结果表明:连通装置中甲烷的均一体积分数为6.517%~8.067%时,并由大容器中心点火工况时,最大爆炸压力、最大爆炸压力上升速率、最高温度和最大速度,以及这些爆炸参数达到最大值时的时刻值随体积分数的变化约呈线性关系;连通装置大容器甲烷体积分数6.0%体积分数梯度为2.0%~8.0%且大容器中心点火时,最大爆炸压力、最大爆炸压力上升速率、最高温度和最大速度随体积分数梯度总体上呈现先增大后减小趋势;大容器中心点火时,最大爆炸压力位于小容器,最大压力上升速率位于管道1或管道2,最大速度位于管道3,速度值可达400~600m/s。本研究可为连通装置内可燃气体爆炸事故防控提供理论指导。  相似文献   

8.
结合小扰动理论,建立了深井气侵关井引发的井筒多相水击压力模型。利用有限体积及特征线等数学方法,提出了基于离散网格求解井筒多相水击压力方法。结果表明:气侵量、井深及关井时间等参数均对井筒多相水击压力影响显著;井底气体的侵入,大幅降低了环空压力,增大了井筒空隙率,减小了井筒水击波速,延缓了井底水击压力峰值点出现时间;随井底气侵量增大,井筒多相水击压力呈减小趋势,气侵量从1.46m3/h增至4.14m3/h,水击压力高峰值大幅度降低;随井深增大,水击压力呈减小趋势,井深1550m同井口处相比,水击压力高峰值减小86.63%;随关井时间延长,水击压力呈减小趋势,关井时间延长10s,水击压力高峰值减小44.46%。  相似文献   

9.
东海HY-A1井H8b气藏为异常高温、高压地层,压裂设计的预测起裂压力与压裂施工不一致,作业中出现高起裂现象;考虑裂缝内流体压力、主应力、井壁渗透率、裂缝倾角等因素,建立了东海低渗储层压裂高起裂压力数学模型;通过现场验证,起裂压力计算误差为4.9%,具有一致性。借助二分法对模型求解,结果表明,随井斜角度的增大,当方位角<45°时,起裂压力变化随井斜角的增大并不明显,当方位角≥45°时,起裂压力呈现先减小后增大的趋势;随方位角的增大起裂角呈现先增大后减小,直至为零,起裂压力总体呈现先减小后增大的趋势;随着方位角增大,起裂压力存在最低峰值,最低峰值区间的方位角在50°~80°之间;井斜角α=0°直井段时,方位角φ=71°时,最低起裂压力峰值为58.5 MPa,在东海本区块属于高起裂;在一定的方位角度上起裂角存在最大峰值,起裂角最大峰值区间的方位角在60°~80°之间;应力差值大、泊松比小、异常高压是高起裂压力的关键因素;在压裂设计中,满足施工需求同时,尽可能设计方位角及井斜角靠近起裂压力最小区域。  相似文献   

10.
为解决螺旋槽干气密封流场计算中一阶线性滑移边界条件下得到的泄漏量与实验结果之间存在较大误差的问题,在一阶线性滑移边界条件的基础上,推导出二阶非线性滑移边界条件下的修正的广义雷诺方程,应用迭代法、PH 线性化方法等求解非线性雷诺方程,获得了气膜压力、流速、泄漏量的近似解.利用Maple程序计算了工程实例中不同转速和不同压力情况下的泄漏量,并与一阶线性滑移边界条件下的泄漏量和实验数值进行比较.结果表明:在工程实例中,压力相同时,泄漏量随转速的增大而增大,一、二阶最大相对误差分别为14.4%、5.4%;转速相同时,泄漏量随压力的增大而增大,一、二阶最大相对误差分别为33.3%、13.3%.本文未考虑干气密封内部的振动情况,因此一、二阶理论计算值小于实际测试值.二阶非线性滑移边界条件下的泄漏量值比一阶线性滑移边界条件下的泄漏量值更加接近实验数值,特别是在工程实例中转速、压力较低的工况下更加明显.  相似文献   

11.
接触式机械密封端面摩擦系数影响因素分析与试验   总被引:1,自引:1,他引:0  
通过理论模拟计算和试验,研究并分析工作参数和端面形貌分形参数对接触式机械密封端面摩擦系数的影响.依据接触式机械密封端面摩擦系数分形模型,并考虑端面摩擦系数与端面平均温度的相互耦合关系,通过模拟计算,对B104a-70型机械密封端面摩擦系数的影响因素进行分析.计算结果表明,端面摩擦系数随着弹簧比压的增大而增大,随着密封流体压力的增大而减小;当转速较小时,端面摩擦系数随着转速的增大而增大,当转速增大到一定数值后,端面摩擦系数则随着转速的增大而略有减小;端面摩擦系数随着软质环端面分形维数的增大和特征尺度系数的减小而增大,且端面越光滑增大的幅度越大.通过在不同的弹簧比压、密封流体压力和转速下的试验对理论计算结果进行了验证,试验密封流体为15℃清水.结果表明:随着弹簧比压、密封流体压力及转速的变化,摩擦系数理论计算值与试验值的变化规律相同;当转速和密封流体压力均较小时,最大相对误差为21.74%;而当转速达到正常工作转速2 900 r/min时,最大相对误差为5.08%.  相似文献   

12.
郭宗禄  刘书杰 《应用力学学报》2020,(2):825-832,I0025,I0026
在最大允许井口压力计算方法中考虑水泥环的完整性,以厚壁圆筒的弹塑性分析理论为基础,建立了套管-水泥环-地层组合体力学模型,将(内层)水泥环内壁发生破坏作为环空允许带压的限制条件。基于Drucker-Prager与拉伸破坏准则计算了某实例井各环空的最大允许井口压力,并将其结果与采用API RP 90标准推荐做法的计算结果进行了对比。计算结果表明:如果环空带压值增大,对于套管-水泥环-地层组合体而言,垂深最深与最浅处的水泥环内壁将最有可能率先发生破坏;采用本文方法的计算结果有可能会小于依据API RP 90标准的计算结果,依据API RP 90标准计算得到A、B环空的最大允许井口压力分别为17.04MPa和6.39MPa,而采用本文方法计算得到A、B环空的最大允许井口压力分别为15.1MPa和17.5MPa。  相似文献   

13.
根据质量守恒及动量守恒方程,建立了微流量控制钻井过程中的节流阀调节的限压/限时动作模型,通过计算机编程对其求解,提出了有模型的节流阀控制环空波动压力方法。计算结果表明:环空中最大波动压力可通过限压/限时调节控制;节流阀控制环空最大波动压力均遵循省时不省压、省压不省时的规律,随限时减小环空波动压力高峰值增加,随限压减小节流阀调节时间增大,随井底溢流量增大,节流阀驻阀开度减小;节流阀关阀时间延长3.2s,节流阀开度低谷值增大2.5度,环空所受波动压力高峰值减小0.3MPa;限压/限时调节控制核心是采用触探式反复调节的方式控制节流阀开度。  相似文献   

14.
将内部含有烷烃的含能微球引入乳化基质,得到一种新型乳化炸药。采用水下爆炸实验探究微球质量分数对乳化炸药水下爆炸性能的影响,得到含能微球质量分数为0.2%~7%的乳化炸药水下爆炸冲击波压力-时程曲线。依据压力结果,通过公式计算和分析得到炸药的水下冲击波峰值压力、比气泡能、比冲击波能以及比爆炸能等水下爆炸参数。实验结果表明:含能微球质量分数0.2%的乳化炸药的峰值压力最大,并且随着微球质量分数增大而下降;乳化炸药的比气泡能随着含能微球质量分数的增大先上升再下降,微球质量分数为4%的比气泡能最大;乳化炸药的爆速、比冲击波能以及比爆炸能均随着含能微球质量分数的增大而下降。  相似文献   

15.
以工程实例为研究对象,建立了整车-整桥系统耦合振动数值分析模型。考虑车轮的跳轨和挤密情况,建立了单边弹簧-阻尼系统弹性轮轨接触模型。采用基于多体系统动力学和有限元法结合的联合仿真技术,计算了两种轮轨接触时动车组列车以不同车速通过大跨度连续桥梁的耦合振动响应。数值计算结果表明:两种轮轨接触模型的桥梁动力响应比较接近;列车的横向轮轨力、轮重减载率和脱轨系数相差较大,当速度为350km/h时,横向轮轨力增大了46.5%,轮重减载率增大了130.8%,脱轨系数增大了24.66%;用单边-弹簧阻尼系统弹性轮轨接触模型更符合实际。  相似文献   

16.
为研究泄压膜约束条件对甲烷/空气预混气体爆炸压力特性的影响,在方形火焰燃烧传播测试管道中布置压力传感器,开展不同泄压膜材料、泄压膜层数及泄压口位置实验。结果表明:牛皮纸和聚丙烯薄膜约束泄爆过程中,每增加一层泄压膜,管道内最大泄爆压力平均上升11.2%和12.3%。各强度泄压膜约束条件下,管道内最大泄爆压力随着泄压口位置接近点火端,均呈现Z形规律,当泄压口设置在距尾部端面0.25 m时,各曲线达到最小值,当泄压口设置在距尾部端面0.50 m时,各曲线出现最大值。  相似文献   

17.
根据列车具体的轴距和轴重,建立了和谐号动车组CRH380AL型列车简化模型;对高速铁路两跨连续梁桥采用多自由度欧拉伯努利梁单元进行主梁的模拟,并将液体黏滞阻尼器模拟为有限元阻尼单元;采用Newmark直接积分方法求解了高速列车作用下的连续梁桥运动方程,数值分析了列车车速以及液体黏滞阻尼器的阻尼系数对于高速铁路连续梁桥振动响应的影响。结果表明:黏滞阻尼器对于桥梁具有明显的减振效果,阻尼力不仅与阻尼系数有关还与列车时速有关;同一黏滞阻尼器条件下,桥梁的最大加速度并不随列车速度的增加而单调增加,而是在某些特定列车车速下桥梁的最大加速度出现了峰值,且随着黏滞阻尼器的阻尼系数增大,桥梁振动响应峰值处的最大加速度减幅不同;同一列车时速的条件下,桥梁的减振效果并不是随着阻尼系数的递增呈正比递增,而是随着阻尼系数的增大,阻尼器的减振效果增幅在减小。  相似文献   

18.
为了研究高速入水过程物体表面压力特性,对细长体高速入水过程进行了试验研究。试验在水池中开展,采用高速摄影的方法观察入水过程空泡形态演化规律,采用压力传感器测量物体表面压力,获得了细长体高速入水过程中空泡形态和表面压力变化规律。试验结果表明:在高速入水过程中,随着入水深度增加,泡内压力先降低后升高之后再次降低,压力升高主要是因为空泡闭合泡内气体受到压缩,之后降低则是因为闭合空泡泄气等原因;细长体尾部在入水过程中,上方始终处于空泡内,压力与稳定空泡内压力变化一致,下方在触水瞬间会产生一压力高峰;同时,随着速度增大,入水过程空泡内压力降低最大,空泡内部压强最低值随着速度的增加呈线性减小趋势。  相似文献   

19.
为了研究不同湿度条件下低浓度甲烷-空气混合物爆炸特征,设计了饱和湿空气发生及储存装置,对管路、气囊和爆炸腔体进行温度控制和流量调节,实现了不同相对湿度的甲烷-空气混合气体的配置。采用20 L球形爆炸测试装置,分析不同相对湿度、甲烷浓度对混合物的最大爆炸压力、最大压力上升速率、爆炸下限及层流燃烧速度的影响。结果表明,随着相对湿度增大,最大爆炸压力和最大爆炸压力上升速率逐渐下降,且呈一定的线性关系。混合气体相对湿度从27.7%增大到80.1%时,甲烷爆炸下限从5.15%上升到5.25%,上升率1.9%,层流燃烧速度随相对湿度的增大也呈线性降低趋势。在本文条件下,相对湿度对甲烷-空气混合物的爆炸影响较小,这主要与常温常压下水蒸气的饱和分压力较低有关,但在高温高压时仍需考虑水蒸气含量的增大对混合气体爆炸特征的影响。  相似文献   

20.
密闭空间煤粉的爆炸特性   总被引:4,自引:0,他引:4  
高聪  李化  苏丹  黄卫星 《爆炸与冲击》2010,30(2):164-168
利用ISO6184/1和IEC推荐的20L球型爆炸测试装置,对4种规格的煤粉进行了系统的粉尘爆炸实验,探讨了煤粉的爆炸规律。得到了样品的爆炸下限浓度、最大爆炸压力,最大爆炸压力上升速率变化规律;分析了浓度、粒径、点火能量对煤粉爆炸猛烈度的影响。结果表明,粒径越小的煤粉,爆炸下限越小,而且在指定浓度下爆炸越猛烈。随着浓度的增大,最大爆炸压力和上升速率先增后减。样品3,峰值爆炸压力对应的浓度为400~1000g/m3,爆炸压力最大值为0.54MPa;点火头能量的增大在一定程度上促使反应更充分,从而爆炸强度更强。由于煤粉组成的特点,实验数据一定程度上说明了爆炸过程中气相燃烧的重要作用。 更多还原  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号