首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
电位活化现象与金属电沉积初始过程的研究   总被引:12,自引:0,他引:12  
进行了恒电流电位-时间曲线和循环伏安曲线的测定,显示了铁电极进行氰化物镀铜时,镀层沉积前铁表面的电位活化过程. 对铁电极上焦磷酸盐镀铜的初始过程研究表明,由于铜的析出电位较正,铜是在未活化的电极表面上沉积的,因此镀层的结合强度很差.采用氩离子溅射和X射线光电子能谱相结合的方法,检测焦磷酸盐镀铜层和铁基体界面区含氧量的变化,证明了氧化层的存在. 通过添加辅助络合剂和控制起始电流密度的方法,可以增强无氰电镀时阴极的极化. 当铜的析出电位负于铁基体的活化电位时,可显示出铁表面的电位活化过程,定量测量镀层的结合强度也与氰化物电镀相近.  相似文献   

2.
LbL层层纳米自组装法制备新型微胶囊*   总被引:6,自引:0,他引:6  
本文介绍了一种新颖、灵活的制备纳米或微米胶囊方法--层层纳米自组装法(LbL)。LbL法制备微胶囊的显著优越性在于能够在纳米尺度上对胶囊的大小、组成、结构、形态和囊壁厚度进行精确的控制.这种新型的微胶囊在生化、制药、药物控释、化妆品和催化等领域具有潜在的应用前景。  相似文献   

3.
采用二步加料的分散聚合法制备单分散聚甲基丙烯酸缩水甘油酯(PGMA)微球,并使其水解,得到水包油(O/W)型Pickering乳液稳定剂.在Pickering乳液聚合过程中,利用相分离机制,形成了聚苯乙烯(PSt)和PGMA复合为整体囊壳的微胶囊相变材料.微胶囊平均粒径达76μm,囊芯含量高达83%,相变焓达到174 J/g,具有很高的储热容量.  相似文献   

4.
Ni—La2O3复合镀层的氧化行为及机制   总被引:4,自引:1,他引:4  
通过对金属镍、镍镀层及Ni-La2O3复合镀层于900℃、1000℃时的恒温氧化实验,发现Ni-La2O3复合镀层的氧化行为明显改善。高分辨电子显微镜(HREM)的观测研究表明,Ni-La2O3复合镀层氧化时,纳米尺寸的La2O3颗粒掺入到氧化层中,形成了NiO-La2O3复合氧化物层;在氧化层晶界发现了异常原子排列的新现象。由此认为,Ni-La2O3复合镀层抗高温氧化性能的提高,主要归因于小尺寸  相似文献   

5.
研究了胶束增强型聚电解质(PAH/PSS和PADA/PSS)胶囊在不同溶液环境中的形貌变化,发现这种新型的胶囊具有迥异于传统聚电解质胶囊的囊壁结构;研究了二维聚电解质复合膜与模板溶解液中嵌段共聚物PS-b-PAA胶束之间的相互作用,发现胶束层可以通过静电力与聚电解质胶囊囊壁相互作用.同时,模拟模板溶出后聚电解质胶囊内部的环境条件,研究了嵌段共聚物胶束在胶囊内部的存在状态及其在透析过程中的变化规律,认为共聚物可以通过疏水作用沉积于聚电解质复合膜的内壁,并通过Ca2+离子的桥联作用稳定,也就是在聚电解质复合膜层基础上又形成了一层胶束层.即这种胶束增强型聚电解质微胶囊的囊壁是由聚电解质层和胶束层所形成的双层结构.用这种双层结构模型,我们合理解释了胶囊在高盐离子浓度下的形貌变化.  相似文献   

6.
载细胞海藻酸钠/壳聚糖微胶囊的化学破囊方法研究   总被引:19,自引:0,他引:19  
以海藻酸钠-壳聚糖-海藻酸钠微胶囊(简称ACA微胶囊)为研究体系,建立了一种生理条件下ACA微胶囊的化学破囊方法,破囊过程充分考虑了对囊内生物物质活性的保持.以微生物细胞PichiapastorisGS115和动物细胞L929为模型,以NaHCO3和Na3C6H5O7·2H2O为破囊液基本组分,考察了破囊液对ACA微胶囊的破囊效果及破囊过程对囊内细胞活性的影响.结果表明,破囊操作可在30s内完成,破囊率为100%,微胶囊膜完全溶解,破囊后细胞存活率在85%以上.  相似文献   

7.
三聚氰胺-甲醛树脂包裹环氧树脂微胶囊的制备及表征   总被引:4,自引:0,他引:4  
针对环氧树脂基材料的自修复,选取四氢邻苯二甲酸二缩水甘油酯作为芯材,采用三聚氰胺-甲醛树脂为壁材,对其进行微胶囊化包裹.结果表明,制得的具有单囊结构的环氧树脂微胶囊,胶囊粒径较小(约6.7μm)、囊壁较薄(约0.2μm)、芯含量较高(83.2 wt%),囊壁内、外表面光滑致密,胶囊具有良好的密闭性和耐热性;在微胶囊化过程中,三聚氰胺-甲醛树脂的缩聚反应动力学起关键作用,芯材没有参与囊壁形成的交联反应;包裹后的芯材活性保持不变,胶囊被复合到材料过程中囊芯活性也保持不变;胶囊的强度较高,能承受与基体材料复合过程中的外力作用,且与基体材料间粘结良好,在裂纹形成过程中能够随基体同时开裂.  相似文献   

8.
焦磷酸盐电镀铜初始过程研究   总被引:5,自引:0,他引:5  
冯绍彬  商士波  冯丽婷 《电化学》2005,11(2):228-231
应用恒电流法研究了铁基体上焦磷酸盐电镀铜电位时间变化类型与镀层结合强度之间的关系.提出了临界起始电流密度(DKC)概念.当起始工作电流DKI大于DKC时,铁电极首先被极化至铁表面的活化电位,即基体表面被活化,随后极化至铜的析出电位,使铜层沉积在活化的铁基体表面上,形成具有良好结合强度的铜镀层.反之,如DKI小于DKC,则铜层只能在"钝化"的含氧层表面上析出,得到的镀层结合强度很差.由氩离子溅射深度刻蚀和X射线光电子能谱(XPS)检测出结合强度差的镀层和基体间界面含氧层的存在.调整工艺条件,优化了焦磷酸盐直接镀铜工艺,可降低工艺的DKC,得到与铁基体具有良好结合强度的电镀层.  相似文献   

9.
以ABS塑料为基体,甲醛为还原剂,EDTA为络合剂,研究了化学镀铜的基本工艺。考察镀液的pH值、温度、时间对镀铜的影响,确定最佳工艺参数为pH=12.5、T=50℃、t=40min。通过扫描电镜和X射线衍射分析了最佳条件下镀铜层的形貌和成分,结果表明:该镀层外观红亮,表面平整,杂质含量很少。  相似文献   

10.
通过对金属镍、镍镀层及Nl-La2o3复合愤层于900℃、1000℃时的恒温氧化实验,发现Nl-La2O3复合镀层的氧化行为明显改善。高分辨电子显徽镜(HREM)的观测研究表明,Ni-La2O3复合铰层氧化时,纳米尺寸的ka2O3颗粒掺人到氧化层中,形成了NiO-La2O3复合氧化物层;在氧化层晶界发现了异常原子排列的新现象。由此认为,Ni-La2O3复合镀层抗高温氧化性能的提高,主要归因于小尺寸的纳米颗粒可微量溶解,成为La(3+)的晶界们聚“源”,阻止Ni(2+)的短路向外扩散,从而改善了氧化层的微观结构和生长机制。  相似文献   

11.
Composite microcapsules of poly(vinyl alcohol)/poly(acrylic acid)/multi-walled carbon nanotubes were prepared and the electromagnetic interference shielding behavior was evaluated for the composite microcapsules. The dispersion and adhesion of multi-walled carbon nanotubes in microcapsules were improved by the surface modification through direct oxyfluorination which introduced polar groups on the multi-walled carbon nanotubes. The composite microcapsules containing the oxyfluorinated multi-walled carbon nanotubes showed significant increases in permittivity, permeability, and electromagnetic interference shielding efficiency. The electromagnetic interference shielding efficiency of composite microcapsule increased up to 51 dB mainly base on the absorption mechanism.  相似文献   

12.
用化学复合镀技术制备了含有无机类富勒烯硫化钨纳米材料的Ni-P-(IF-WS_2) 复合镀层。用环-块摩擦实验测试了Ni-P-(IF-SW_2)的摩擦学性能。研究结果表明 它比与Ni-P,Ni-P-(层状2H-WS_2)和Ni-P-石墨复合镀层具有更高的耐磨性能和更 低的摩擦系数。分析了无机类富勒烯纳米材料改善镀层摩擦学性能的机理。  相似文献   

13.
Polymer composite materials based on Fenilon S-2 (FS-2) heat-resistant aromatic polyamide and filled with microcapsules containing a lubricating material were developed and used for tribological purposes. FS-2 acts both as a matrix and as a material of microcapsule shells. The choice of oils suitable for preparing the composite is limited and is determined by the capability of oils to preserve lubricating properties at high temperatures of FS-2 forming, up to 320°С. The tribotechnical and physicomechanical tests of the developed composites containing microcapsules demonstrated significant improvement of the tribological characteristics of the materials relative to the initial polymer. The polymer composites filled with microcapsules form an oriented lubricating film on the friction surfaces; this film is retained under high loads for a long time.  相似文献   

14.
分别以甲苯-2,4-二异氰酸酯(TDI)和异佛尔酮二异氰酸酯(IPDI)为单体,通过原位聚合法制备了离子液体@聚脲(PU)微胶囊,并与环氧树脂共混制得环氧树脂复合材料.利用扫描电子显微镜分析了微胶囊及复合材料的表面形貌,通过电子万能试验机和摩擦磨损试验机探究了微胶囊改性复合材料在不同情况下的力学性能和摩擦学性能,用傅里叶变换红外光谱对微胶囊进行表征.分析结果表明,以IPDI为单体合成的微胶囊摩擦学性能更加优异,并且随着微胶囊用量的增加,复合材料的摩擦学性能有明显提高,当微胶囊添加质量分数为20%时,含有微胶囊的复合材料具有较低的滑动摩擦系数并且摩擦面较光滑,这是由于在实验过程中,随着微胶囊壁材的破损,芯材离子液体被释放,形成了一层致密的润滑膜.  相似文献   

15.
Polyelectrolyte microcapsules with avidin-poly(styrene sulfonate) (PSS) membrane were prepared by a layer-by-layer deposition technique. The uptake and release of biotin-labeled fluorescein (b-FITC) as well as immobilization of biotin-labeled glucose oxidase (b-GOx) to the microcapsule were studied. The polyelectrolyte microcapsules were prepared by coating the surface of calcium carbonate (CaCO(3)) microparticles with an avidin/PSS multilayer membrane, followed by dissolution of CaCO(3) core in an ethylenediaminetetraacetic acid solution. Inner and outer poly(allylamine)/PSS films were required to isolate the microcapsules, whereas microcapsules could not be formed without the support. The uptake of b-FITC into the microcapsule was highly enhanced through a strong binding of b-FITC to avidin as compared with the uptake of biotin-free FITC. Release of b-FITC from the microcapsule was accelerated upon addition of biotin due to a competitive binding of the added biotin to the binding site of avidin. Similarly, the surface of microcapsule was modified with b-GOx with retaining its catalytic activity.  相似文献   

16.
In a previous work [J. Microencapsulation, in press], polyamide microcapsules containing a poly(acrylic acid) gel as a macromolecular ligand (PAA-CAPS) with a mean diameter of 210 μm were prepared using an original two-step polymerization process combining interfacial polycondensation and radical polymerization in a water in oil inverse emulsion system. Extractions of many divalent cations were examined. In this work, we proposed to synthesise by the same process, smaller microcapsules with a mean diameter of 10 μm (PAA-μCAPS). Reference polyamide microcapsules, i.e. without ligand were also synthesized (μCAPS) and (CAPS) [J. Microencapsulation, in press]. Microcapsule wall thickness was evaluated by SEM and TEM observations of microcapsule cross-section cuts, microcapsule water content was determined by thermogravimetric experiments. Specific surface area and total volume of the pore of microcapsules were determined by BET method based on N2 adsorption/desorption. The comparison of the extractabilities and the stripping of Cu(II) into the various kind of microcapsules were examined.  相似文献   

17.
WU  Ke-Gang CHAI  Xiang-Hua CHEN  Yue 《中国化学》2005,23(11):1569-1572
To improve the oxidative stability and application of fish oil, it was microencapsulated by simple coacervation followed by spray drying. Simple coacervation took place by adding malt dextrin into the emulsion of fish oil and hydroxypropyl methylcellulose (HPMC) solution. Influences of several process parameters on the microencapsulation were evaluated and the oxidative stability and microstructure of microcapsules were analyzed. Results showed that the coacervation could be observed only when dextrose equivalent value (DE value) of malt dextrin, concentration of HPMC solution and fish oil percentage in microcapsules were no more than 20. 5% and 40%, respectively. Moreover, microencapsulation efficiency was higher at HPMC solution concentration of 4% and fish oil percentage of less than 30%. The oxidative stability of fish oil was improved by the microencapsulation and done best in the ease of replacing malt dextrin by 40% with acacia. Scanning electronic microscopic photographs showed that the microcapsule obtained was a round, smooth and hollow microcapsule with its wall made up of innumerable small and solid submicrocapsules with the core of fish oil.  相似文献   

18.

Urea-formaldehyde (UF) microcapsules loaded with linseed oil (LO) and benzotriazole (BTA) as core materials have been synthesized by in situ emulsion polymerization. The capsules were characterized by FTIR spectroscopy and particle size analysis. Surface morphology of the microcapsules was analyzed using scanning electron microscopy (SEM). The microcapsules were incorporated into epoxy resin and coated on a mild steel substrate to form a corrosion resistant organic coating. The self-healing property of coatings loaded with different weight % of microcapsules containing LO + BTA was tested by immersion of the UF coated mild steel specimens in 3.5 wt % NaCl solution. It was analyzed through visual inspection, weight loss measurements, and SEM of the scribed region of coating. It was observed that the addition of microcapsules enhances the corrosion resistance of the scratched samples.

  相似文献   

19.
A novel propisochlor microcapsules suspension (CS) was prepared via in-situ polymerization. The preparation of melamine-formaldehyde resin microcapsules containing propisochlor with different ratios of core-shell material was investigated. The synthesized microcapsules were characterized by Fourier Transform Infrared spectrometer, Scanning Electron Microscope, Ultraviolet spectrometry, Thermogravimetric analyses and particle size analyzer. As the ratio of core/shell was 1, the diameter of the prepared microcapsules was the smallest (3.55?µm), while narrowest size distribution (span: 1.19) and the melamine formaldehyde microcapsules possessed the highest encapsulation efficiency (93.26%). The surface of the microcapsules was smooth and the microcapsules had poor adhesion. These microcapsules had compact microstructures and global shapes, which had a good thermal stability and propisochlor could be preserved better in the poly(melamine-formaldehyde) (PMF) microcapsules. These results indicated that the prepared microcapsule had better performance. Additionally, the propisochlor was easily degraded through microorganisms and had a short half-life. The microcapsule suspension of propisochlor hasn’t been researched yet. Therefore, it is significant to prepare microcapsule suspension. The technology of controlled release has effectively prolonged the persistence of active ingredients. More importantly, there is no use of organic solvents in the preparation of microcapsules suspension, which avoided the pollution of solvents to the ecological environment.  相似文献   

20.
《Arabian Journal of Chemistry》2020,13(12):9068-9080
The interface combination of anti-corrosive materials and polymer matrix has a significant effect on the overall performance of the composite coating. However, past research has focused on blending anti-corrosive materials to improve the performance of the polymer matrix. Herein, we proposed a layer-by-layer spray-coating process to further enhance the reinforcing effect of anti-corrosive materials on the polymer matrix by changing their feeding modes. In this paper, taking waterborne polyacrylate (WPA) as an example, two kinds of reinforcement materials commonly used to improve the corrosion resistance of polymer matrix were introduced into the coating system and then applied to the tinplate: cross-linker and microcapsule. Firstly, five types of WPA composite coating systems were designed according to the feeding mode of aziridine cross-linker and the position of benzotriazole@zinc oxide microcapsules (BTA@ZnO MCs). Electrochemical impedance spectroscopy (EIS) and electrical equivalent circuits were used to evaluate the corrosion resistance of these composite coating systems and analyze their electrochemical processes. By spraying the mixture of WPA and aziridine crosslinker as the bottom layer and BTA@ZnO MCs as the top layer, the resulting composite coating exhibited higher corrosion resistance and hydrophobic properties. Scanning electron microscope (SEM) and contact angle tests indicated that the feeding mode of aziridine cross-linker and the position of BTA@ZnO MCs played important roles in the compactness and hydrophobicity of the composite coating. Subsequently, the effects of the amount of aziridine cross-linker and BTA@ZnO MCs on the corrosion resistance and physical properties of the composite coating were further analyzed by EIS, water absorption test, contact angle test and atomic force microscopy (AFM). The significant improvement in the corrosion resistance of this composite coating was mainly attributed to the synergistic effect of highly cross-linked network structure and superhydrophobic surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号