首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Fluorescent nanoparticles (FNs) with unique optical properties may be useful as biosensors in living cancer cell imaging and cancer targeting. In this study, anti-EGFR antibody conjugated fluorescent nanoparticles (FNs) (anti-EGFR antibody conjugated FNs) probe was used to detect breast cancer cells. FNs with excellent character such as non-toxicity and photostability were first synthesized with a simple, cost-effective and environmentally friendly modified Stőber synthesis method, and then successfully modified with anti-EGFR antibody. This kind of fluorescence probe based on the anti-EGFR antibody conjugated FNs has been used to detect breast cancer cells with fluorescence microscopy imaging technology. The experimental results demonstrate that the anti-EGFR antibody conjugated FNs can effectively recognize breast cancer cells and exhibited good sensitivity and exceptional photostability, which would provide a novel way for the diagnosis and curative effect observation of breast cancer cells and offer a new method in detecting EGFR.  相似文献   

2.
Yunhua He  Yaping Li  Xu Hun 《Mikrochimica acta》2010,171(3-4):393-398
A sensitive fluoroimmunoassay (FIA) was developed for the determination of human chorionic gonadotropin (β-HCG). It is based on fluorescent polymer nanoparticles (PFNPs) coated with anti-β-HCG monoclonal antibodies in a sandwich type of fluoroimmunoassay. The PFNPs were synthesized by precipitation polymerization using methacrylic acid (MAA) as the monomer, trimethylolpropane trimethacrylate as the cross-linker, azobisisobutyronitrile as the radical initiator, and fluorescein as the fluorophore. Anti-β-HCG monoclonal antibody was labeled with the PFNPs and then used in a FIA of β-HCG in human serum samples using low-fluorescent transparent 96-well microtiter plates. The calibration graph for β-HCG is linear over the range from 1.25 to 300 mIU mL-1 with a detection limit of 0.3 mIU mL-1 (3σ). The relative standard deviation for seven parallel measurements of 10 mIU mL-1 of β-HCG is 3.8%. The method has the specificity of an immunoassay and the sensitivity of fluorescent nanoparticle label technology.  相似文献   

3.
We report on the fabrication and characterization of biofunctional magnetic nanoparticles as contrast agents for magnetic resonance imaging. The anti-cancer antigen 19-9 monoclonal antibody (a cancer-targeting antibody) was conjugated onto the magnetic contrast agents in an effort to detect pancreatic tumor. The structure, size, morphology and magnetic property of the biofunctional magnetic nanoparticles are characterized systematically by means of transmission electron microscopy and X-ray diffractometry. Furthermore, the interaction between the nanoparticles and pancreas cancers cells are investigated by atomic force microscope and transmission electron microscopy. Magnetic resonance imaging demonstrates that the conjugated nanoparticles can effectively target cancer cells both in vitro and in vivo, suggesting that they potentially can be used as contrast agents for magnetic resonance imaging of pancreas cancer.  相似文献   

4.
We report a stimuli‐responsive fluorescent nanomaterial, based on graphene oxide coupled with a polymer conjugated with photochromic spiropyran (SP) dye and hydrophobic boron dipyrromethane (BODIPY) dye, for application in triggered target multicolor bioimaging. Graphene oxide (GO) was reduced by catechol‐conjugated polymers under mildly alkaline conditions, which enabled to formation of functionalized multicolor graphene nanoparticles that can be induced by irradiation with UV light and by changing the pH from acidic to neutral. Investigation of these nanoparticles by using AFM, fluorescence emission, and in vitro cell and in vivo imaging revealed that they show different tunable colors in bioimaging applications and, more specifically, in cancer‐cell detection. The stability, biocompatibility, and quenching efficacy of this nanocomposite open a different perspective for cell imaging in different independent colors, sequentially and simultaneously.  相似文献   

5.
He X  Ge J  Wang K  Tan W  Shi H  He C 《Talanta》2008,76(5):1199-1206
A fluorescent silica nanoparticles (FSiNPs) mediated double immunofluorescence staining technique has been proposed for MGC-803 gastric cancer cells imaging by confocal laser scanning microscopy. Anti-CEA antibody and anti-CK19 antibody which can be both bonded to MGC-803 gastric cancer cells were first conjugated to fluorescein isothiocyanate (FITC) doped fluorescent silica nanoparticles (FFSiNPs) and RuBPY doped fluorescent silica nanoparticles (RFSiNPs), respectively. The MGC-803 gastric cancer cells were incubated with the mixture of anti-CEA antibody-conjugated FFSiNPs and anti-CK19 antibody-conjugated RFSiNPs, and subsequently imaged using confocal laser scanning microscopy. With this method, the in vitro cultured MGC-803 gastric cancer cells lines were successfully doubled labeled and distinguished through antigen-antibody recognition, together with the green and red signal of FFSiNPs and RFSiNPs simultaneously obtained without crossreactivity by confocal laser scanning microscopy imaging. By comparison with the conventional double immunofluorescence staining using green-emitting and red-emitting dyes, the photostability of this proposed method for confocal laser scanning microscopy imaging has been greatly improved. Furthermore, the ex vivo imaging of primary MGC-803 gastric cancer cells samples came from the tumor tissues of mice bearing the MGC gastric cancer tumor xenografts by this method have also been explored. The results demonstrate that the method offers potential advantage of photostability for the confocal laser scanning microscopy imaging of MGC-803 gastric cancer cells, and is applicable to the imaging of primary MGC-803 gastric cancer cells from the tumor tissues.  相似文献   

6.
Fluorescent nanoparticles based on π‐conjugated small molecules and polymers are two different classes of π‐conjugated systems that have attracted much interest. To date, both emerging classes have only been studied separately and showed no clear differences in their properties. Herein these nanoparticles are compared on the basis of a fluorene co‐polymer and its corresponding small molecule. Both systems formed nanoparticles with the same diameter, whereas the fluorescence properties clearly differed. In case of the polymer the fluorescence diminished, whereas for the small molecules the fluorescence increased. In addition, the capability of encapsulation and release of a hydrophobic dye from the fluorescent nanoparticles was studied. For the polymer system, encapsulation was highly efficient and no release was observed, whereas for the small molecule system encapsulation was less efficient and release of the dye was observed. These studies show a clear difference between small molecules and polymers which has important implications for the design of fluorescent nanoparticles.  相似文献   

7.
A novel kind of fluorescent nanoparticles(FNPs)has been prepared using a precipitation polymerization method.Methacrylic acid,trimethylolpropane trimethacrylate and azobisisobutyronitrile were used as functional-monomer,cross-linker and initiator, respectively.Compared with other fluorescent nanoparticles,the FNPs have the characteristics including low dye leakage and good photostability.The fluorescence microscopy imaging indicates that the FNPs can be used as fluorescent labels in bioanalysis.  相似文献   

8.
Two-photon excitation microscopy (2PEM) has been known as a noninvasive and powerful bio-imaging tool for studying living cells, intact tissues and living animals because of their unique advantages such as localized excitation, deep tissue penetration as well as less photo-damage. However, the major limitations that hinder its practical applications in biological systems are low two-photon absorption cross sections of conventional fluorescence probes. Conjugated polymer nanoparticles (CPNs) consisting of highly fluorescent conjugated polymers are promising fluorescent probes for 2PEM due to their unique advantages including large two-photon absorption cross sections, high fluorescence quantum yield, good photo-stability and biocompatibility, facile chemical synthesis, tunable optical properties as well as versatile surface modifications. This account summarizes the recent efforts of our group on development of novel polyfluorene based CPNs as 2PEM contrast agents for live cell imaging.  相似文献   

9.
《Analytical letters》2012,45(14):2280-2292
Abstract

Cervical cancer is the second most common cancer in women worldwide with 80% of cases arising in the developing world, following cancer of the breast. The mortality associated with cervical cancer can be reduced if this disease is detected in a timely fashion. In this study, a folate conjugated fluorescent nanoparticle (FCFN) probe was used to detect cervical cancer cells. Fluorescent nanoparticles (FNs), with excellent characteristics such as nontoxicity and photostability, were first synthesized with a simple, cost-effective, and environmentally friendly modified St?ber synthesis method and then successfully modified with folate. This kind of fluorescence probe based on FCFNs has been used to detect cervical cancer cells with fluorescence microscopy imaging technology. The experimental results demonstrate that the FCFNs can effectively recognize cervical cancer cells and exhibit good sensitivity and exceptional photostability; they would provide a novel way for the diagnosis and curative effect observation of cervical cancer cells and offer a new method in detecting folate receptors (FR).  相似文献   

10.
Heptamethine cyanine dyes enable deep tissue fluorescence imaging in the near infrared (NIR) window. Small molecule conjugates of the benchmark dye ZW800-1 have been tested in humans. However, long-term imaging protocols using ZW800-1 conjugates are limited by their instability, primarily because the chemically labile C4′-O-aryl linker is susceptible to cleavage by biological nucleophiles. Here, we report a modular synthetic method that produces novel doubly strapped zwitterionic heptamethine cyanine dyes, including a structural analogue of ZW800-1 , with greatly enhanced dye stability. NIR-I and NIR-II versions of these doubly strapped dyes can be conjugated to proteins, including monoclonal antibodies, without causing undesired fluorophore degradation or dye stacking on the protein surface. The fluorescent antibody conjugates show excellent tumor-targeting specificity in a xenograft mouse tumor model. The enhanced stability provided by doubly strapped molecular design will enable new classes of in vivo NIR fluorescence imaging experiments with possible translation to humans.  相似文献   

11.
We describe an innovative multimodal system, which combines magnetic targeting of therapeutic agents with both magnetic resonance and fluorescence imaging into one system. This new magnetic nanoplatform consists of superparamagnetic γFe(2)O(3) nanoparticles, used clinically as an MRI contrast agent, conjugated to therapeutic molecules of the hydroxylmethylene bisphosphonate family (HMBPs): alendronate with an amine function as the terminal group. In vitro tests with breast cancer cells show that the γFe(2)O(3)@alendronate hybrid nanomaterial reduces cell viability and acts as a drug delivery system. We also investigated the anti-tumoural properties in vivo in nude mice xenografted with MDA-MB-231 tumours. We show that the presence of both γFe(2)O(3)@alendronate and a magnetic field significantly reduced the development of tumours. The amine functionalities can be used as precursor groups for the covalent coupling of peptides or monoclonal antibodies for specific biological targeting. The feasibility of this process was demonstrated by coupling rhodamine B, a fluorescence marker, to the γFe(2)O(3)@alendronate nanohybrid. The system showed fluorescent properties and high affinity for cells. Flow cytometry and fluorescence microscopy were used to study the kinetics of γFe(2)O(3)@alendronate uptake by cells. The magnetic and fluorescent nanoparticles are potential candidates for smart drug-delivery systems. Also, the superparamagnetic behaviour of such nanoparticles may be exploited as MRI contrast agents to improve therapeutic diagnostics.  相似文献   

12.
超细荧光聚合物纳米微球的制备   总被引:1,自引:1,他引:0  
合成了具有较高荧光量子产率(0.69)和良好光稳定性的可聚合荧光染料单体,该荧光染料的光稳定性高于商品化的染料罗丹明B。 通过氧化还原引发剂引发乳液聚合制备了超细荧光聚合物纳米微球,将染料分子共价连接在聚合物链上。 使用非离子表面活性剂Triton X-100作为乳化剂、甲基丙烯酸甲酯(MMA)作为单体和助乳化剂,制备的超细纳米微球平均粒径为22 nm,而不加MMA时制备出的纳米微球平均粒径在150 nm左右。 由于微球表面带有苄氯基团,为进一步的微球功能化提供了途径。  相似文献   

13.
Xiaoxiao He  Dilan Qin  Weihong Tan 《Talanta》2007,72(4):1519-1526
Cy5 dye is widely used as a biomarker in the research fields of life science because of its excitation at wavelengths above 600 nm where autofluorescence of bio-matter is much reduced. However, Cy5 dye could not be encapsulate into silica directly to form stable nanoparticles by using of the traditional methods. In this paper, an improved method had been developed to prepare Cy5 dye doped core-shell silica fluorescent nanoparticles (SFNPs), employing biomolecules conjugated Cy5 as the core material and silica coating produced from the hydrolysis TEOS (tetraethyl orthosilicate) in the water-in-oil microemulsion. To obtain stable Cy5 dye doped SFNPs with core-shell structure, five kinds of biomolecules with different iso-electric point (pI) have been selected to conjugate Cy5 for preparation of core-shell SFNPs. Results demonstrated that very bright and photostable Cy5 doped core-shell SFNPs could be both prepared by use of positive polysine conjugated Cy5 or IgG conjugated Cy5 as the core material, respectively. IgG conjugated Cy5 doped core-shell SFNPs was selected as a demonstration to be characterized and applied as a near-infrared fluorescent marker in cell recognition. The results showed that Cy5 doped core-shell SFNPs prepared by conjugating with a positive biomolecules IgG as the core material were luminescent and stable. About 110 Cy5 dye molecules could be doped in one nanoparticle with size of 42 ± 5 nm. The breast cancer cells had been selectively recognized by use of the near-infrared fluorescent marker based on the Cy5-IgG doped core-shell SFNPs. And the results demonstrated that this Cy5 doped core-shell SFNPs fluorescence marker was superior to the pure Cy5 dye marker for cell recognition in photostability and detection sensitivity.  相似文献   

14.
Uniform "core-satellite" structured nanoparticles containing organic dye incorporated in the silica shell and fluorescence quenching Au nanoparticles have been synthesized with excellent fluorescent properties, and their targeted imaging application in tumor cells has been investigated.  相似文献   

15.
Multifunctional nanoprobes with distinctive magnetic and fluorescent properties are highly useful in accurate and early cancer diagnosis. In this study, nanoparticles of Fe3O4 core with fluorescent SiO2 shell (MFS) are synthesized by a facile improved Stöber method. These nanoparticles owning a significant core-shell structure exhibit good dispersion, stable fluorescence, low cytotoxicity and excellent biocompatibility. TLS11a aptamer (Apt1), a specific membrane protein for human liver cancer cells which could be internalized into cells, is conjugated to the MFS nanoparticles through the formation of amide bond working as a target-specific moiety. The attached TLS11a aptamers on nanoparticles are very stable and can't be hydrolyzed by DNA hydrolytic enzyme in vivo. Both fluorescence and magnetic resonance imaging show significant uptake of aptamer conjugated nanoprobe by HepG2 cells compared to 4T1, SGC-7901 and MCF-7 cells. In addition, with the increasing concentration of the nanoprobe, T2-weighted MRI images of the as-treated HepG2 cells are significantly negatively enhanced, indicating that a high magnetic field gradient is generated by MFS-Apt1 which has been specifically captured by HepG2 cells. The relaxivity of nanoprobe is calculated to be 11.5 mg−1s−1. The MR imaging of tumor-bearing nude mouse is also confirmed. The proposed multifunctional nanoprobe with the size of sub-100 nm has the potential to provide real-time imaging in early liver cancer cell diagnosis.  相似文献   

16.
以蛋白质或多肽修饰的吲哚类菁染料Cy3为内核, 采用实验条件简单的油包水反相微乳液方法成核, 通过正硅酸乙酯水解形成的网状二氧化硅包壳的方法制备吲哚类菁染料Cy3嵌入的核壳荧光纳米颗粒. 考察了以不同等电点的蛋白质和多肽修饰的Cy3为内核材料对吲哚类菁染料Cy3嵌入的核壳荧光纳米颗粒制备的影响. 结果表明, 分别采用人免疫球蛋白(IgG)或多聚赖氨酸修饰的Cy3为内核材料, 都能制备荧光强度高、荧光稳定性强和染料泄漏极少的Cy3嵌入的核壳荧光纳米颗粒. 进一步对Cy3嵌入的核壳荧光纳米颗粒进行了表征, 并将基于这一新型的荧光纳米颗粒建立起来的生物标记方法初步应用于流感病毒DNA的检测, 其检测线性范围为3.18×10-10~1.27×10-9 mol/L, 检测下限为3.51×10-10 mol/L, 相关系数r为0.986 5.  相似文献   

17.
Silica-coated magnetic polystyrene nanospheres (MPN) containing CdTe/CdS quantum dots (QDs) and Fe3O4 nanoparticles were prepared, and novel anti-EGFR antibodies were conjugated onto these magneto-fluorescent nanocomposites (MPN–QDs–SiO2) for cancer cell targeting, imaging and collection. Transmission electron microscopy (TEM), scanning electron microscopy (SEM) images and energy-dispersive x-ray spectrometry (EDS) data showed that the MPN had been successfully coated with QDs and a silica shell, and the nanocomposites obtained with negative charged surfaces were well dispersed. The bioconjugates could be used for specifically labeling and separating cancer cells (MDA-MB-435S, SMMC-7721), but did not recognize and separate the K562 cells because the human epidermal growth factor receptor (EGFR) was not expressed on the surface. Because the anti-EGFR antibody, which we have developed, could specifically recognize certain cancer cells that highly expressed EGFR on their surface, these nanoscale bioconjugates, synchronously exhibiting fluorescence and magnetism, may be used in novel bioprobes for labeling and collecting rare cancer cells, which may be beneficial for early cancer diagnosis.  相似文献   

18.
Zhang  Li  Li  Zhenhua  Du  Xianghui  Chang  Xijun 《Mikrochimica acta》2011,173(3-4):391-399
We describe the synthesis of spherical poly(vinyl butyral) (PVB) nanobeads by controlled precipitation via addition of non-solvent. Effects of various reaction parameters on nanoparticle size were investigated by dynamic light scattering and electron microscopy. The ability to incorporate dopant molecules was studied using a fluorescent perylene derivative as a model additive, and the dye-doped nanoparticles were investigated by confocal microscopy. In an optimized experimental protocol, PVB nanoparticles were obtained that were efficiently taken up by human cancer cells devoid of coating. The novel nanospheres are economic, easy to prepare and capable of incorporating additives. Lacking cytotoxicity in vitro, PVB nanobeads are attractive with respect to various potential applications such as optical imaging and particle tracking, diagnostics, and drug delivery.
Figure
The synthesis and characterization of polyvinyl butyral nanoparticles is described. The beads were doped with a dye and used for intracellular fluorescence imaging. The nanospheres are efficiently taken up without coating and do not display in vitro cytotoxicity on human cancer cells. They are therefore attractive for various applications.  相似文献   

19.
The present study describes the development and use of a new bioconjugate combining targeted quantum dot labeling with an immunoperoxidase method and explores whether these bioconjugates could specifically and effectively label Cu/Zn superoxide dismutase (SOD1). The new bioconjugate is designed for the examination of samples both under fluorescent and bright-field microscopy at the same time. For this purpose chlorobis(2-2'-bipyridyl) methacryloyl tyrosine-ruthenium(II) and bis (2-2'-bipyridyl) methacryloyltyrosine-methacryloyltryptophan-ruthenium (II) photosensitive monomers and photosensitive poly(Bis (2-2'-bipyridyl)) methacryloyltyrosine-methacryloyltryptophan-ruthenium(II) were synthesized and characterized. The anti-SOD1 antibody and horseradish peroxidase (HRD) conjugated quantum dots were prepared by using this polymer. The anti-SOD1 antibody and HRD conjugated quantum dots were used in labeling and imaging of SOD1 in rat liver sections. Quantum dot particles were observed as a bright fluorescence in their specific binding locations inside the hepatocytes. The HRD-diaminobenzidine reaction product was observed as brown-colored particles at the same locations under bright-field microscopy. Structural details of the tissue sections could be examined at the same time. The conjugation protocol is simple; the bioconjugate is applicable for efficient cell labeling and can be adapted for imaging of other targets in different tissues. Also, the prepared nanobioconjugates have mechanic stability and can be used for a long period.  相似文献   

20.
This paper demonstrates the development of pH and thermo‐responsive fluorescent nanoparticles, which are composed of graphene oxide (GO) with BODIPY conjugated PEG, to trigger the detection of cancer cells through imaging based on intracellular accommodation. Responsiveness to pH is studied using atomic force microscopy and apparent thickness differences are seen with changes in pH. Confocal images of the nanoparticles (NPs) exhibit remarkably bright fluorescence at lysosomal pH, while no fluorescence is observed under a physiological environment, making the NPs a novel fluorescent probe. The NPs are able to accumulate the hydrophobic anticancer drug DOX due to the hydrophobic surface of GO and show excellent drug release behavior. Therefore, the NPs developed are novel candidates for a fluorescent probe to identify cancer cells and a drug carrier for cancer therapy.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号