首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the integration of a size-based three-dimensional filter, with micrometre-sized pores, in a commercial microfluidic chip. The filter is fabricated inside an already sealed microfluidic channel using the unique capabilities of two-photon polymerization. This direct-write technique enables integration of the filter by post-processing in a chip that has been fabricated by standard technologies. The filter is located at the intersection of two channels in order to control the amount of flow passing through the filter. Tests with a suspension of 3 μm polystyrene spheres in a Rhodamine 6G solution show that 100% of the spheres are stopped, while the fluorescent molecules are transmitted through the filter. We demonstrate operation up to a period of 25 minutes without any evidence of clogging. Preliminary validation of the device for plasma separation from whole blood is shown. Moreover, the filter can be cleaned and reused by reversing the flow.  相似文献   

2.
Chip-to-world interface is a major issue in the field of microfluidics and its applications. We developed a plug and play microfluidic device composed of a fluid driving unit and a polymer chip containing microfluidic channels and reservoirs. The one and only connection of the device to the external world is a set of electric control lines for the driving unit. Just putting the reagents and samples onto the reservoirs, the chip can be operated for chemical or biochemical reaction and analysis. We demonstrate here that silicon-based micropumps embedded in the present device allow us to achieve flexible fluidic manipulations with minimum time delay and dead volume.  相似文献   

3.
Biological cells in vivo typically reside in a dynamic flowing microenvironment with extensive biomechanical and biochemical cues varying in time and space. These dynamic biomechanical and biochemical signals together act to regulate cellular behaviors and functions. Microfluidic technology is an important experimental platform for mimicking extracellular flowing microenvironment in vitro. However, most existing microfluidic chips for generating dynamic shear stress and biochemical signals require expensive, large peripheral pumps and external control systems, unsuitable for being placed inside cell incubators to conduct cell biology experiments. This study has developed a microfluidic generator of dynamic shear stress and biochemical signals based on autonomously oscillatory flow. Further, based on the lumped-parameter and distributed-parameter models of multiscale fluid dynamics, the oscillatory flow field and the concentration field of biochemical factors has been simulated at the cell culture region within the designed microfluidic chip. Using the constructed experimental system, the feasibility of the designed microfluidic chip has been validated by simulating biochemical factors with red dye. The simulation results demonstrate that dynamic shear stress and biochemical signals with adjustable period and amplitude can be generated at the cell culture chamber within the microfluidic chip. The amplitudes of dynamic shear stress and biochemical signals is proportional to the pressure difference and inversely proportional to the flow resistance, while their periods are correlated positively with the flow capacity and the flow resistance. The experimental results reveal the feasibility of the designed microfluidic chip. Conclusively, the proposed microfluidic generator based on autonomously oscillatory flow can generate dynamic shear stress and biochemical signals without peripheral pumps and external control systems. In addition to reducing the experimental cost, due to the tiny volume, it is beneficial to be integrated into cell incubators for cell biology experiments. Thus, the proposed microfluidic chip provides a novel experimental platform for cell biology investigations.  相似文献   

4.
Electrochemical principles provide key techniques to promote the construction of bio/chemical microsystems of the next generation. There is a wealth of technology for the microfabrication of bio/chemical sensors. In addition, microfluidic transport in a network of flow channels, pH regulation, and automatic switching can be realized by electrochemical principles. Since the basic components of the devices are electrode patterns, the integration of different components is easily achieved. With these techniques, bio/chemical assays that require the exchange of solutions can be conducted on a chip. Furthermore, autonomous microanalysis systems that can carry out necessary procedures are beginning to be realized. In this article, techniques developed in our group will be comprehensively introduced.  相似文献   

5.
This paper reports a prototype for a standard connector between a microfluidic chip and the macro world. This prototype demonstrate a fully functioning socket for a microchip to access the outside world by means of fluids, data signals and energy supply. It supports up to 10 channels for the input and output of liquids or gases, as well as compressed air or vacuum lines for pneumatic power lines. The socket has built-in valves for each flow channel. It also contains 28 pins for the connection of electrical signals and power. Built-in valves make it possible to control the flow in each channel independently. A chip ( 11.0 x 11.0 x 0.9 mm) can be mounted into or dismounted from the socket with one touch. The fluidic connectors of the socket are designed to contact vertically on the top of chip. And the electrical connectors (the spring array) of that physically support the chip and contact lead pads at the bottom of chip. No adhesives or solders are used at any contact points. The pressure limit for the connection of working fluids was 0.2 MPa and the current limit for the electrical connections was 1 A. This socket supports both serial and parallel processing applications. It exhibits great potential for developing microfluidic systems efficiently.  相似文献   

6.
The design and fabrication of a multilayered polymer micro-nanofluidic chip is described that consists of poly(methylmethacrylate) (PMMA) layers that contain microfluidic channels separated in the vertical direction by polycarbonate (PC) membranes that incorporate an array of nanometre diameter cylindrical pores. The materials are optically transparent to allow inspection of the fluids within the channels in the near UV and visible spectrum. The design architecture enables nanofluidic interconnections to be placed in the vertical direction between microfluidic channels. Such an architecture allows microchannel separations within the chip, as well as allowing unique operations that utilize nanocapillary interconnects: the separation of analytes based on molecular size, channel isolation, enhanced mixing, and sample concentration. Device fabrication is made possible by a transfer process of labile membranes and the development of a contact printing method for a thermally curable epoxy based adhesive. This adhesive is shown to have bond strengths that prevent leakage and delamination and channel rupture tests exceed 6 atm (0.6 MPa) under applied pressure. Channels 100 microm in width and 20 microm in depth are contact printed without the adhesive entering the microchannel. The chip is characterized in terms of resistivity measurements along the microfluidic channels, electroosmotic flow (EOF) measurements at different pH values and laser-induced-fluorescence (LIF) detection of green-fluorescent protein (GFP) plugs injected across the nanocapillary membrane and into a microfluidic channel. The results indicate that the mixed polymer micro-nanofluidic multilayer chip has electrical characteristics needed for use in microanalytical systems.  相似文献   

7.
Deng Y  Zhang N  Zhao L  Yu X  Ji X  Liu W  Guo S  Liu K  Zhao XZ 《Lab on a chip》2011,11(23):4117-4121
In this paper, we demonstrate a new type of microfluidic chip that can realize continuous-flow purification of hydrogel beads from a carrier oil into aqueous solution by using a laminar-like oil/water interface. The microfluidic chip is composed by two functional components: (1) a flow-focusing bead generation module that can control size and shape of beads, (2) a bead extraction module capable of purifying hydrogel beads from oil into aqueous solution. This module is featured with large branch channels on one side and small ones on the opposite side. Water is continuously infused into the bead extraction module through the large branch channels, resulting in a laminar-like oil/water interface between the branch junctions. Simulation and experimental data show that the efficiency of oil depletion is determined by the relative flow rates between infused water and carrier oil. By using such a microfluidic device, viable cells (HCT116, colon cancer cell line) can be encapsulated in the hydrogel beads and purified into a cell culture media. Significantly improved cell viability was achieved compared to that observed by conventional bead purification approaches. This facile microfluidic chip could be a promising candidate for sample treatment in lab-on-a-chip applications.  相似文献   

8.
Wu CY  Liao WH  Tung YC 《Lab on a chip》2011,11(10):1740-1746
This paper reports a novel pressure sensor with an electrical readout based on electrofluidic circuits constructed by ionic liquid (IL)-filled microfluidic channels. The developed pressure sensor can be seamlessly fabricated into polydimethylsiloxane (PDMS) microfluidic systems using the well-developed multilayer soft lithography (MSL) technique without additional assembly or sophisticated cleanroom microfabrication processes. Therefore, the device can be easily scaled up and is fully disposable. The pressure sensing is achieved by measuring the pressure-induced electrical resistance variation of the constructed electrofluidic resistor. In addition, an electrofluidic Wheatstone bridge circuit is designed for accurate and stable resistance measurements. The pressure sensor is characterized using pressurized nitrogen gas and various liquids which flow into the microfluidic channels. The experimental results demonstrate the great long-term stability (more than a week), temperature stability (up to 100 °C), and linear characteristics of the developed pressure sensing scheme. Consequently, the integrated microfluidic pressure sensor developed in this paper is promising for better monitoring and for characterizing the flow conditions and liquid properties inside the PDMS microfluidic systems in an easier manner for various lab on a chip applications.  相似文献   

9.
Polyimide-based microfluidic devices   总被引:1,自引:0,他引:1  
This paper describes the development of polyimide-based microfluidic devices. A layer transfer and lamination technique is used to fabricate flexible microfluidic channels in various shapes and with a wide range of dimensions. High bond strengths can be achieved by cure cycle adaptation and surface treatment of the polyimide layers prior to bonding. The polyimide microchannels can be combined with metallization layers to fabricate electrodes inside and outside channels. The resulting devices can be used for flexible fluidic and electrical connectors, implantable fluid delivery devices, microelectrodes with embedded fluidic channels, chip-based flow cytometry and for a great variety of other applications in medical, chemical or biological research.  相似文献   

10.
We report a reliable strategy to perform automated image cytometry of single (non-adherent) stem cells captured in microfluidic traps. The method rapidly segments images of an entire microfluidic chip based on the detection of horizontal edges of microfluidic channels, from where the position of the trapped cells can be derived and the trapped cells identified with very high precision (>97%). We used this method to successfully quantify the efficiency and spatial distribution of single-cell loading of a microfluidic chip comprised of 2048 single-cell traps. Furthermore, cytometric analysis of trapped primary hematopoietic stem cells (HSC) faithfully recapitulated the distribution of cells in the G1 and S/G2-M phase of the cell cycle that was measured by flow cytometry. This approach should be applicable to automatically track single live cells in a wealth of microfluidic systems.  相似文献   

11.
Generation of dynamic chemical signals with pulse code modulators   总被引:1,自引:0,他引:1  
The on-chip generation of dynamic chemical signals in a flow stream via pulse code modulation (PCM) is demonstrated. In this chip the output signal concentration is determined by dispersion and averaging of a serial stream of digitally encoded plugs of concentrated solute and pure solvent as the plugs flow through a long dispersive capillary. A two-bit PCM chemical signal generator was fabricated in two-level PDMS technology. The chip was capable of generating 31 distinct output levels with 10-plug cycles. Several example chemical waveforms (sawtooth and cosine) were generated at flow rates of 43.2 nL s(-1), and plug frequencies of up to 15 Hz, with maximum output signal bandwidth of up to about 1 Hz. The modulator chip was also used to synthesize physiological signals emulating intracellular beta-cell cytosolic Ca(2+) oscillations, extracellular beta-cell insulin release and rat-striatum dopamine release.  相似文献   

12.
A polymer microfluidic chip accomplishing automated sample flow and replacement without external controls and an application of the chip for bioanalytical reaction were described. All the fluidic operations in the chip were achieved by only natural capillary flow in a time-planned sequence. For the control of the capillary flow, the geometry of the channels and chambers in the chip was designed based on theoretical considerations and numerical simulations. The microfluidic chip was made by using polymer replication techniques, which were suitable for fast and cheap fabrication. The test for a biochemical analysis, employing an enzyme (HRP)-catalyzed precipitation reaction, exhibited a good performance using the developed chip. The presented microfluidic method would be applicable to biochemical lab-on-a-chips with integrated fluid replacement steps, such as affinity elution and solution exchange during biosensor signaling.  相似文献   

13.
We present an integrated circuit/microfluidic chip that traps and moves individual living biological cells and chemical droplets along programmable paths using dielectrophoresis (DEP). Our chip combines the biocompatibility of microfluidics with the programmability and complexity of integrated circuits (ICs). The chip is capable of simultaneously and independently controlling the location of thousands of dielectric objects, such as cells and chemical droplets. The chip consists of an array of 128 x 256 pixels, 11 x 11 microm(2) in size, controlled by built-in SRAM memory; each pixel can be energized by a radio frequency (RF) voltage of up to 5 V(pp). The IC was built in a commercial foundry and the microfluidic chamber was fabricated on its top surface at Harvard. Using this hybrid chip, we have moved yeast and mammalian cells through a microfluidic chamber at speeds up to 30 microm sec(-1). Thousands of cells can be individually trapped and simultaneously positioned in controlled patterns. The chip can trap and move pL droplets of water in oil, split one droplet into two, and mix two droplets into one. Our IC/microfluidic chip provides a versatile platform to trap and move large numbers of cells and fluid droplets individually for lab-on-a-chip applications.  相似文献   

14.
Li ZG  Ando K  Yu JQ  Liu AQ  Zhang JB  Ohl CD 《Lab on a chip》2011,11(11):1879-1885
A method for on-demand droplet fusion in a microfluidic channel is presented using the flow created from a single explosively expanding cavitation bubble. We test the technique for water-in-oil droplets, which are produced using a T-junction design in a microfluidic chip. The cavitation bubble is created with a pulsed laser beam focused into one droplet. High-speed photography of the dynamics reveals that the droplet fusion can be induced within a few tens of microseconds and is caused by the rapid thinning of the continuous phase film separating the droplets. The cavitation bubble collapses and re-condenses into the droplet. Droplet fusion is demonstrated for static and moving droplets, and for droplets of equal and unequal sizes. Furthermore, we reveal the diffusion dominated mixing flow and the transport of a single encapsulated cell into a fused droplet. This laser-based droplet fusion technique may find applications in micro-droplet based chemical synthesis and bioassays.  相似文献   

15.
SC Lin  PW Yen  CC Peng  YC Tung 《Lab on a chip》2012,12(17):3135-3141
Flow cytometry is a technique capable of optically characterizing biological particles in a high-throughput manner. In flow cytometry, three dimensional (3D) hydrodynamic focusing is critical for accurate and consistent measurements. Due to the advantages of microfluidic techniques, a number of microfluidic flow cytometers with 3D hydrodynamic focusing have been developed in recent decades. However, the existing devices consist of multiple layers of microfluidic channels and tedious fluidic interconnections. As a result, these devices often require complicated fabrication and professional operation. Consequently, the development of a robust and reliable microfluidic flow cytometer for practical biological applications is desired. This paper develops a microfluidic device with a single channel layer and single sheath-flow inlet capable of achieving 3D hydrodynamic focusing for flow cytometry. The sheath-flow stream is introduced perpendicular to the microfluidic channel to encircle the sample flow. In this paper, the flow fields are simulated using a computational fluidic dynamic (CFD) software, and the results show that the 3D hydrodynamic focusing can be successfully formed in the designed microfluidic device under proper flow conditions. The developed device is further characterized experimentally. First, confocal microscopy is exploited to investigate the flow fields. The resultant Z-stack confocal images show the cross-sectional view of 3D hydrodynamic with flow conditions that agree with the simulated ones. Furthermore, the flow cytometric detections of fluorescence beads are performed using the developed device with various flow rate combinations. The measurement results demonstrate that the device can achieve great detection performances, which are comparable to the conventional flow cytometer. In addition, the enumeration of fluorescence-labelled cells is also performed to show its practicality for biological applications. Consequently, the microfluidic flow cytometer developed in this paper provides a practical platform that can be used for routine analysis in biological laboratories. Additionally, the 3D hydrodynamic focusing channel design can also be applied to various applications that can advance the lab on a chip research.  相似文献   

16.
Applicability of polydimethylsiloxane (PDMS) for easy and rapid fabrication of enzyme sensor chips, based on electrochemical detection, is examined. The sensor chip consists of PDMS substrate with a microfluidic channel fabricated in it, and a glass substrate with enzyme-modified microelectrodes. The two substrates are clamped together between plastic plates. The sensor chip has shown no leakage around the microelectrodes under continuous solution flow (34 μl/min). Amperometric response of the sensor chips developed in this work suggest that various types of enzyme sensors can be designed by using PDMS microfluidic channels.  相似文献   

17.
Dijkink R  Ohl CD 《Lab on a chip》2008,8(10):1676-1681
Lab-on-a-chip devices are in strong demand as versatile and robust pumping techniques. Here, we present a cavitation based technique, which is able to pump a volume of 4000 microm3 within 75 micros against an estimated pressure head of 3 bar. The single cavitation event is created by focusing a laser pulse in a conventional PDMS microfluidic chip close to the channel opening. High-speed photography at 1 million frames s(-1) resolves the flow in the supply channel, pump channel, and close to the cavity. The elasticity of the material affects the overall fluid flow. Continuous pumping at repetition rates of up to 5 Hz through 6 mm long square channels of 20 microm width is shown. A parameter study reveals the key-parameters for operation: the distance between the laser focus and the channel, the maximum bubble size, and the chamber geometry.  相似文献   

18.
J B Edel  E K Hill  A J de Mello 《The Analyst》2001,126(11):1953-1957
This article presents a non-invasive, optical technique for measuring particulate flow within microfluidic channels. Confocal fluorescence detection is used to probe single fluorescently labeled microspheres (0.93 microm diameter) passing through a focused laser beam at a variety of flow rates (50 nL min(-1)-8 microL min(-1)). Simple statistical methods are subsequently used to investigate the resulting fluorescence bursts and generate velocity data for the flowing particles. Fluid manipulation is achieved by hydrodynamically pumping fluid through microchannels (150 microm wide and 50 microm deep) structured in a polydimethylsiloxane (PDMS) substrate. The mean fluorescence burst frequency is shown to be directly proportional to flow speed. Furthermore, the Poisson recurrence time and width of recovered autocorrelation curves is demonstrated to be inversely proportional to flow speed. The component-based confocal fluorescence detection system is simple and can be applied to a diversity of planar chip systems. In addition, velocity measurement only involves interrogation of the fluidic system at a single point along the flow stream, as opposed to more normal multiple-point measurements.  相似文献   

19.
T Nisisako  T Ando  T Hatsuzawa 《Lab on a chip》2012,12(18):3426-3435
This study describes a microfluidic platform with coaxial annular world-to-chip interfaces for high-throughput production of single and compound emulsion droplets, having controlled sizes and internal compositions. The production module consists of two distinct elements: a planar square chip on which many copies of a microfluidic droplet generator (MFDG) are arranged circularly, and a cubic supporting module with coaxial annular channels for supplying fluids evenly to the inlets of the mounted chip, assembled from blocks with cylinders and holes. Three-dimensional flow was simulated to evaluate the distribution of flow velocity in the coaxial multiple annular channels. By coupling a 1.5 cm × 1.5 cm microfluidic chip with parallelized 144 MFDGs and a supporting module with two annular channels, for example, we could produce simple oil-in-water (O/W) emulsion droplets having a mean diameter of 90.7 μm and a coefficient of variation (CV) of 2.2% at a throughput of 180.0 mL h(-1). Furthermore, we successfully demonstrated high-throughput production of Janus droplets, double emulsions and triple emulsions, by coupling 1.5 cm × 1.5 cm - 4.5 cm × 4.5 cm microfluidic chips with parallelized 32-128 MFDGs of various geometries and supporting modules with 3-4 annular channels.  相似文献   

20.
A freezing technique protocol was proposed for coupling microchip electrophoresis with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry(MALD1-TOF-MS).The microfluidic flow was frozen immediately after electrophoresis on microfluidic chip and the separated analyte molecules were kept in their zone pattern in the electrophoresis.Then,the frozen-chip was lyophilized and sent into TOF-MS instrument as a MALDI target,and the analyte molecules in the microfluidic channels were subjected to analysis by mass spectrometry.This approach could eliminate sample cross-contamination, providing a new interface for microchip electrophoresis and MALDI-MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号