首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Awl-shaped diamond-like carbon (DLC) was directly grown on anodic aluminum oxide (AAO) template by using filtered cathodic arc plasma (FCAP) technique at room temperature. The awls of DLC were about 250 nm in the height and the diameters of the awls were ∼100 nm at the top. The awl density was estimated to be ∼108 cm−2. A broad asymmetric band ranging from 1100 to 1800 cm−1 was detected by Raman spectrum. This asymmetric band was characteristic band of DLC. The sp3/(sp3+sp2) ratio of C-C bond of the awl-shaped DLC was measured by X-ray photoelectron spectrum, and it was about 68.3%. Field-emission properties of the awl-shaped DLC were investigated. A low turn-on field of 2.6 V/μm at 10 μA/cm2 with an emission area of 3.14 mm2 was achieved, and the emission current stability was very good. The results indicated that the electrons were emitted under both the effect of enhanced field because of the geometry and the work function of the DLC sample. Based on Fowler-Nordheim plot, the values of work function for the awl-shaped DLC were estimated in ranges of 0.23-1.08 from a linearity plot.  相似文献   

2.
Carbon nanofibers were grown by electrodeposition technique onto aligned zinc oxide (ZnO) nanorods deposited by hybrid wet chemical route on glass substrates. X-ray diffraction traces indicated very strong peak for reflections from (0 0 2) planes of ZnO. The Raman spectra were dominated by the presence of G band at about 1597 cm−1 corresponding to the E2g tangential stretching mode of an ordered graphitic structure with sp2 hybridization and a D band at about 1350 cm−1 originating from disordered carbon. Fourier transformed infrared studies indicated the presence of a distinct characteristic absorption peak at ∼511 cm−1 for Zn-O stretching mode. Photoluminescence spectra indicated band edge luminescence of ZnO at ∼3.146 eV along with a low intensity peak at ∼0.877 eV arising out of carbon nanofibers. Field emission properties of these films and their dependence on the CNF coverage on ZnO nanorods are reported here. The average field enhancement factor as determined from the slope of the FN plot was found to vary between 1 × 103 and 3 × 103. Both the values of turn-on field and threshold field for CNF/ZnO were lower than pure ZnO nanorods.  相似文献   

3.
Attempt has been made to deposit diamond like carbon (DLC) films from ethanol through electrodeposition at low voltages (80-300 V) at 1 mm interelectrode separation. The films were characterized by atomic force microscopy (AFM), Scanning electron microscopy (SEM), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy and Auger electron Spectroscopy (AES). AFM investigations revealed the grain sizes are of tens of nanometers. The films were found to be continuous, smooth and close packed. Presence of peaks at 2958, 2929 and 2869 cm−1 in FTIR spectrum indicates the bonding states to be of predominantly sp3 type (C-H). Raman spectroscopy analysis revealed two broad bands at ∼1350 and ∼1570 cm−1. The downshift of the G-band of graphite is indicative of presence of DLC. Analysis of the Raman spectra for the samples revealed an improvement in the film quality with increase in the voltage. Micro Raman investigations indicate the formation of diamond phase at the deposition potential of 80 V. The sp2 contents the films calculated from Auger electron spectra were calculated and were found to be 31, 19 and 7.8% for the samples prepared at 80, 150 and 300 V, respectively. A tentative mechanism for the formation of DLC has been proposed. These results indicate the possibility of deposition of DLC at low voltage.  相似文献   

4.
The microstructure and morphology of graphite irradiated by high-intensity pulsed ion beams (HIPIB) has been studied by varying the ion current density as 200, 350 and 1500 A/cm2 with one to five shots. Phase transformation from graphite to diamond-like carbon (DLC) on the HIPIB-irradiated graphite was confirmed by Raman spectroscopy where a typical broadened asymmetric peak appeared in the wavenumber range of 1100-1700 cm−1. Formation of DLC on the irradiated graphite strongly depended on the HIPIB parameters and preferably took place at the medium ion current density of 350 A/cm2 up to five shots. Numerical simulation of ablation process was performed to explore the transformation mechanism of DLC from graphite irradiated by HIPIB. The calculation showed that the temperature profile in irradiated graphite at 350 A/cm2 is almost identical to that at 200 A/cm2, showing a deeper heat-affected zone in comparison with that of 1500 A/cm2. Moreover, the ablation depth per shot is around 0.8 μm at 350 A/cm2, higher than that of 0.4 μm at 200 A/cm2 and much lower than that of 8.4 μm at 1500 A/cm2, respectively. The experimental and numerical results indicate that a proper temperature and pressure repetitively created in the top layer of ablated graphite during HIPIB irradiation facilitates the phase transformation.  相似文献   

5.
Indium-tin oxide (ITO) films deposited on heated and non-heated glass substrates by a pulsed Nd:YAG laser at 355 nm and ∼2.5 J/cm2 were used in the fabrication of simple organic light-emitting diodes (OLEDs), ITO/(PVK + Alq3 + TPD)/Al. The ITO was deposited on heated glass substrates which possessed resistivity as low as ∼3 × 10−4 Ω cm, optical transmission as high as ∼92% and carrier concentration of about ∼5 × 1020 cm−3, were comparable to the commercial ITO. Substrate heating transformed the ITO microstructure from amorphous to polycrystalline, as revealed by the XRD spectrum. While the polycrystalline ITO produced higher OLED brightness, it was still lower than that on the commercial ITO due to surface roughness. A DLC layer of ∼1.5 nm deposited on this ITO at laser fluence of >12.5 J/cm2 improved its device brightness by suppressing the surface roughness effect.  相似文献   

6.
R.S. Li 《Applied Surface Science》2009,255(9):4754-4757
Diamond-like carbon (DLC) films were deposited on Al substrates by electrodeposition technique under various voltages. The surface morphology and compositions of synthesized films were characterized by scanning electron microscopy and Raman spectroscopy. With the increase of deposition voltage, the sp2 phase concentration decreased and the surface morphology changed dramatically. The influence of deposition voltage on the field electron emission (FEE) properties of DLC films was not monotonic due to two adverse effects of deposition voltage on the surface morphology and compositions. The DLC film deposited under 1200 V exhibited optimum FEE property, including a lowest threshold field of 13 V/μm and a largest emission current density of 904.8 μA/cm2 at 23.5 V/μm.  相似文献   

7.
An emission spectrum of hot D2O (1500 °C) has been analyzed in the 2077-4323 cm−1 region. A considerable number of new vibration-rotation energy levels have been determined and two new vibrational levels identified. The new (0 4 1) and (0 2 2) vibrational levels have estimated band origins of 7343.93 ± 0.01 and 7826.38 ± 0.02 cm−1, respectively.  相似文献   

8.
Diamond-like carbon films containing Ag and Cu in nanocrystalline form were deposited onto SnO2-coated glass substrates by electrochemical technique. Relative amount of silver and copper to be incorporated in the DLC matrix was tailored by varying the amount of silver and copper containing salts in the electrolyte. Current density was adjusted to obtain films with different crystallite size while the volume fraction of the metal nanocrystallites was altered by varying the dilution of the solution containing the salts. Raman studies indicated the presence of two peaks located at ∼1350 cm−1 (D-line) and 1566 cm−1 (G-line) for all the films and the relative intensities of these peaks changed with the amount of metal incorporation in it. The FTIR spectra were seen to be dominated by a peak at 975 cm−1 for C-H out of plane deformation modes along with peaks for C-H bending, C-H stretching and C-C stretching modes at 858, 1113 and 1189 cm−1, respectively. The optical absorption spectra showed a single plasmon band instead of two characteristic bands for Ag and Cu. We ascribe this to nanophase limited interfacial alloying at the Ag-Cu interface. The experimental observation was analyzed in the light of Mie theory.  相似文献   

9.
The effect of very high energy electron beam irradiation on the field emission characteristics of multi-walled carbon nanotubes (MWCNTs) has been investigated. The MWCNTs films deposited on silicon (Si) substrates were irradiated with 6 MeV electron beam at different fluence of 1×1015, 2×1015 and 3×1015 electrons/cm2. The irradiated films were characterized using scanning electron microscope (SEM) and micro-Raman spectrometer. The SEM analysis clearly revealed a change in surface morphology of the films upon irradiation. The Raman spectra of the irradiated films show structural damage caused by the interaction of high-energy electrons. The field emission studies were carried out in a planar diode configuration at the base pressure of ∼1×10−8 mbar. The values of the threshold field, required to draw an emission current density of ∼1 μA/cm2, are found to be ∼0.52, 1.9, 1.3 and 0.8 V/μm for untreated, irradiated with fluence of 1×1015, 2×1015 and 3×1015 electrons/cm2. The irradiated films exhibit better emission current stability as compared to the untreated film. The improved field emission properties of the irradiated films have been attributed to the structural damage as revealed from the Raman studies.  相似文献   

10.
We report on the development of a laser source in the mid-infrared spectral region based on difference-frequency generation (DFG) in a periodically poled LiNbO3 (PPLN) crystal. Continuously tunable coherent radiation from 2.75 to 4.78 μm was produced by optical parametric interaction between a diode-pumped monolithic continuous-wave (CW) Nd:YAG laser operating at 1.064 μm and a CW Ti:Sapphire laser tunable from 767 to 871 nm. Temperature-dependent quasi-phase-matched DFG wavelength acceptance bandwidth was studied and characterized. An empiric formula is given to estimate the phase-matched wavelength acceptance bandwidth as a function of the crystal temperature at Λ = 22.5 μm. A large frequency scan of 128 cm−1 (about 78 cm−1 above 1 μW) near 4.2 μm was achieved. The whole absorption spectrum of the P and R branches of the ν3 band of atmospheric carbon dioxide has been recorded with a single phase-matched frequency scan.  相似文献   

11.
Dandelion-like gallium nitride (GaN) microstructures were successfully synthesized via Ni catalyst assisted chemical vapor deposition method at 1200 °C under NH3 atmosphere by pre-treating precursors with aqueous ammonia. The as-synthesized product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). X-ray diffraction analysis revealed that as-synthesized dandelion-like GaN was pure and has hexagonal wurtzite structure. SEM results showed that the size of the dandelion-like GaN structure was in the range of 30-60 μm. Dandelion-like GaN microstructures exhibited reasonable field emission properties with the turn-on field of 9.65 V μm−1 (0.01 mA cm−2) and threshold field of 11.35 V μm−1 (1 mA cm−2) which is sufficient for applications of electron emission devices, field emission displays and vacuum micro electronic devices. Optical properties were studied at room temperature by using fluorescence spectrophotometer. Photoluminescence (PL) measurements of dandelion-like GaN showed a strong near-band-edge emission at 370.2 nm (3.35 eV) with blue band emission at 450.4 nm (2.75 eV) and 465.2 nm (2.66 eV) but with out yellow band emission. The room-temperature photoluminescence properties showed that it has also potential application in light-emitting devices. The tentative growth mechanism for the growth of dandelion-like GaN was also described.  相似文献   

12.
The high-resolution infrared spectrum of the polar N2O dimer has been observed in the region of the N2O ν3 fundamental (∼1280 cm−1) using a tunable diode laser to probe a pulsed supersonic slit jet. About 120 rotational transitions were assigned in terms of an a/b hybrid band of a planar asymmetric top molecule with a slipped parallel structure. The vibrational origin was determined to be 1290.21 cm−1, showing a blue shift of 5.31 cm−1 with respect to the monomer band origin. In addition, the spectrum of the nonpolar isomer at 1279.71 cm−1 has been remeasured and analyzed in improved detail. Small but widespread perturbations are noted in this band, which appear somewhat similar to larger effects observed previously in the ν1 + ν3 region for nonpolar (N2O)2.  相似文献   

13.
Diamond-like carbon (DLC) films were fabricated by pulsed laser ablation of a liquid target. During deposition process the growing films were exited by a laser beam irradiation. The films were deposited onto the fused silica using 248 nm KrF eximer laser at room temperature and 10−3 mbar pressure. Film irradiation was carried out by the same KrF laser operating periodically between the deposition and excitation regimes. Deposited DLC films were characterized by Raman scattering spectroscopy. The results obtained suggested that laser irradiation intensity has noticeable influence on the structure and hybridization of carbon atoms deposited. For materials deposited at moderate irradiation intensities a very high and sharp peak appeared at 1332 cm−1, characteristic of diamond crystals. At higher irradiation intensities the graphitization of the amorphous films was observed. Thus, at optimal energy density the individual sp3-hybridized carbon phase was deposited inside the amorphous carbon structure. Surface morphology for DLC has been analyzed using atomic force microscopy (AFM) indicating that more regular diamond cluster formation at optimal additional laser illumination conditions (∼20 mJ per impulse) is possible.  相似文献   

14.
The Cu/ZnO nanocomposite films have been synthesized by cathodic electrodeposition and characterized using X-ray diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), photoluminescence (PL) and field emission microscope (FEM). The XRD pattern shows a set of well defined diffraction peaks, which could be indexed to the wurtzite hexagonal phase of ZnO. In addition, characteristic diffraction peaks corresponding to Cu and Zn are also observed. The SEM image shows formation of two-dimensional (2D) hexagonal sheets randomly distributed and aligned almost normal to the substrate. Uniformly distributed small clusters of Cu nanoparticles possessing average diameter of ∼25 nm, as revealed from the TEM image, are seen to be present on these 2D ZnO sheets. The selected area electron diffraction (SAED) image confirms the nanocrystalline nature of the Cu particles. From the field emission studies, carried out at the base pressure of ∼1 × 10−8 mbar, the turn-on field required for an emission current density of 0.1 μA/cm2 is found to be 1.56 V/μm and emission current density of ∼100 μA/cm2 has been drawn at an applied field of 3.12 V/μm. The Cu/ZnO nanocomposite film exhibits good emission current stability at the pre-set value of ∼10 μA over a duration of 5 h. The simplicity of the synthesis route coupled with the better emission properties propose the electrochemically synthesized Cu/ZnO nanocomposite film emitter as a promising electron source for high current density applications.  相似文献   

15.
Diamond-like carbon films were deposited by electrolysis of a water-ethanol solution on Cu at low voltages (60-100 V) at 2 mm interelectrode separation. The films were characterized by scanning electron microscopy (SEM), X-ray diffractometer (XRD) and Raman spectroscopy. The films were found to be continuous and compact with uniform grain distribution. Raman spectroscopy analysis revealed two broad bands at ∼1350 and ∼1580 cm−1. The downshift of the G band of graphite is indicative of the presence of DLC. For XRD analysis, the three strong peaks located at 2θ values of 43.2°, 74.06° and 89.9° can be identified with reflections form (1 1 1), (2 2 0) and (3 1 1) plane of diamond.  相似文献   

16.
MIPAS (Michelson Interferometer for Passive Atmosphere Sounding) is a high spectral resolution interferometer (0.035 cm−1 unapodized) covering a very wide spectral range (from 4.16 to 16.4 μm) with high sensitivity that was successfully launched on the 1st of March 2002 on the European Envisat satellite. MIPAS has measured spectra of the Earth’s upper atmosphere in the 4.3 μm region with the highest spectral resolution so far reached in this altitude region. This high spectral resolution permitted to obtain the frequency position of ro-vibrational NO+ transitions with an unprecedented accuracy. It has been found that the spectral line positions of the NO+ (1-0) ro-vibrational band are shifted by about ∼0.15 cm−1 with respect to those listed in the HITRAN 2004 compilation. Also, spectral line positions of the NO+ (2-1) ro-vibrational band are shifted by approximately 0.05-0.1 cm−1 with respect to those listed in the HITRAN 2004 compilation. A new set of Hamiltonian constants for NO+ has been derived from MIPAS data which is suggested to be used in future HITRAN compilations.  相似文献   

17.
Two types of lasers based on hydrogen-like impurity-related transitions in bulk silicon operate at frequencies between 1 and 7 THz (wavelength range of 50-230 μm). These lasers operate under mid-infrared optical pumping of n-doped silicon crystals at low temperatures (<30 K). Dipole-allowed optical transitions between particular excited states of group-V substitutional donors are utilized in the first type of terahertz silicon lasers. These lasers have a gain ∼1-3 cm−1 above the laser thresholds (>1 kW cm−2) and provide 10 ps-1 μs pulses with a few mW output power on discrete lines. Raman-type Stokes stimulated emission in the range 4.6-5.8 THz has been observed from silicon crystals doped by antimony and phosphorus donors when optically excited by radiation from a tunable infrared free electron laser. The scattering occurs on the 1s(E)→1s(A1) donor electronic transition accompanied by an emission of the intervalley transverse acoustic g-phonon. The Stokes lasing has a peak power of a few tenths of a mW and a pulse width of a few ns. The Raman optical gain is about 7.4 cm GW−1 and the optical threshold intensity is ∼100 kW cm−2.  相似文献   

18.
A simple and reliable method has been developed for synthesizing finely patterned tin dioxide (SnO2) nanostructure arrays on silicon substrates. A patterned Au catalyst film was prepared on the silicon wafer by radio frequency (RF) magnetron sputtering and photolithographic patterning processes. The patterned SnO2 nanostructures arrays, a unit area is of ∼500 μm × 200 μm, were synthesized via vapor phase transport method. The surface morphology and composition of the as-synthesized SnO2 nanostructures were characterized by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The mechanism of formation of SnO2 nanostructures was also discussed. The measurement of field emission (FE) revealed that the as-synthesized SnO2 nanorods, nanowires and nanoparticles arrays have a lower turn-on field of 2.6, 3.2 and 3.9 V/μm, respectively, at the current density of 0.1 μA/cm2. This approach must have a wide variety of applications such as fabrications of micro-optical components and micropatterned oxide thin films used in FE-based flat panel displays, sensor arrays and so on.  相似文献   

19.
A comprehensive comparative study of electron field emission properties of carbon nanotube (CNT) films prepared by vacuum filtration and screen-printing was carried out. Field emission performance of vacuum filtered CNT films with different filtered CNT suspension volumes was systematically studied, and the optimum electron emission was obtained with a low turn on field of ∼0.93 V/μm (at 1 μA/cm2) and a high field enhancement factor β of ∼9720. Comparing with screen-printed CNT films, vacuum filtered CNT films showed better electron emission performance, longer lifetime, and greater adhesive strength to substrates. This work reveals a potential use of vacuum filtered CNT films as field emission cathodes.  相似文献   

20.
Erbium-doped MoO3−Bi2O3−TeO2 (MBT) glasses suitable for broadband optical amplifier applications have been fabricated and characterized optically. The maximum phonon band of undoped glasses is at 915 cm−1, and the emission from the Er3+: 4I13/2 → 4I15/2 transition locates around 1.53 μm with a full width at half maximum (FWHM) of ∼80 nm. The lifetime and quantum efficiency of the 4I13/2 level are 2.13 ms and ∼90%, respectively. Under the same measurement condition, the upconversion emission intensities at 550 nm in Er3+-doped MBT glasses is about 30 times weaker than that in Er3+-doped Na2O−ZnO−TeO2 (NZT) glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号