首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, the influences of the BaCu(B2O5) (BCB) additive on sintering behavior, structure and magnetic properties of iron deficient M-type barium ferrite Ba(CoTi)xFe11.8−2xO19 (BaM) have been investigated. It is found that the maximum sintered densities of BaM change from 86% to 94% as the BCB content varies from 1 to 4 wt%. Single-phase BaM can be detected by the XRD analysis in the sample with 3 wt% BCB sintered at 900 °C, and the microstructure is hexagonal platelets with few intragranular pores. This is attributed to the formation of the BCB liquid phase. Meanwhile, the experimental results illuminate that the CoTi ions prefer to occupy the 4f2 and 2b sites and the magnetic properties depend on the amount of CoTi-substitution. In addition, the chemical compatibility between BaM and silver paste is also investigated; it can be seen that BaM is co-fired well with the silver paste and no other second phase is observed. Especially, the 3 wt% BCB-added Ba(CoTi)0.9Fe11O19 sintered at 900 °C has good properties with the sintered density of 4.9 g/cm3, saturation magnetization of 49.7 emu/g and coercivity of 656.6 Oe. These results indicate that it is cost effective in the production of Low Temperature Co-fired Ceramics (LTCC) multilayer devices.  相似文献   

2.
Single phase BaM (BaFe12O19) ferrites are prepared by using sol–gel method. The preparing conditions of samples are investigated in detail, such as acid/nitrate ratio, the value of pH and annealing temperature. The best conditions on preparing BaFe12O19, which can be obtained on a Fe/Ba ratio of 12, the citric acid contents R = 3, the starting pH of solution is 9, and annealing temperature 950 °C. The thermal decomposition behavior of the dried gel was examined by TG–DSC, the structure and properties of powders were measured respectively by XRD techniques. The magnetic properties of barium ferrites are emphatically researched about the changing crystallite size and annealing temperature by the vibrating sample magnetometer (VSM). Magnetic measurement shows that the barium ferrite samples annealed at 1000 °C has the maximal coercive field of 5691.91 Oe corresponding to the maximal remnant magnetization of 35.60 emu/g and the sample synthesized at 1000 °C has the maximal saturation magnetization of 60.75 emu/g.  相似文献   

3.
Hexagonal barium ferrite (BaFe12O19) thin films were fabricated by spin coating of precursors from sol-gel methods. Different amount of citric acid was added. Weight loss and changes of chemical bonds during the heat treatment below 500 °C were recorded by thermogravity analyzer and Fourier transform infrared spectroscopy, respectively. The morphology of the films, i.e. the amount of acicular crystallites in the film, was controlled by adjusting the quantity of citric acid. The X-ray diffraction shows that the films are c-axis oriented, but the crystallization is less perfect with the increase of the citric acid. With the increase of the citric acid, the percentage of the acicular crystallites increased. At the same time, the coercivity force increased. The acicular crystallites were not exchange-coupled to the platelet crystallites. The citric acid was understood to form complex with iron ions and accelerate the exothermal auto-combustion. The c-axis oriented growth of the film was thus deteriorated.  相似文献   

4.
The preparation of ZnSn-substituted barium ferrite films by sputtering deposition was studied. The as-sputtered films were amorphous, and annealing at a minimum of 750 °C was required to crystallize the films, based on the X-ray diffraction analysis and the magnetic measurements. Scanning electron microscopy combined with energy-dispersive X-ray spectroscopic microanalysis confirmed that the films were single phase with the composition BaZnxSnxFe12−2xO19, x=0.2−0.3, and their thicknesses were 0.4-1.0 μm when annealed at 750-900 °C. Atomic and magnetic force microscopy studies showed no significant grain growth upon annealing and that the films consisted of single-domain grains forming interaction-cluster-type domains. The natural ferromagnetic resonance frequency was determined at around 4 GHz, together with substantial magnetic losses that make these films promising candidates for microwave absorbers.  相似文献   

5.
《Current Applied Physics》2020,20(5):638-642
A series of bio-silica incorporated barium-ferrite-composites with the composition of (x)Bio-SiO2:(80-x)γ-Fe2O3:(20)BaO, where x = 0, 1, 2, and 3 wt% were prepared using the modified solid-state reaction method. The influence of different bio-silica (extricated from sintered rice husk) contents on the surface morphologies, structures, and magnetic characteristics of these composites were assessed. The relative complex permittivity and permeability were resolved using the Nicholson-Ross-Weir strategy in the frequency range of 8–13 GHz. Meanwhile, the reflection loss was estimated through the transmission/reflection line theory to assess the MW absorption properties of the composites. Incorporation of the bio-silica in the barium ferrite composites generated a new hexagonal phase (Ba3Fe32O51) and a tetragonal phase (BaFeSi4O10) which led to a decrease in the saturation magnetization and significant shift in the MW frequency absorption peak positions.  相似文献   

6.
Cobalt ferrite nano-particles (CoFe2O4) were synthesized by the co-precipitation method with ammonium hydroxide as an alkaline solution. The reactions were carried out at different temperatures between 20 and 80 °C. The nano-particles have been investigated by magnetic measurements, X-ray powder diffraction and transmission electron microscopy. The average crystallite size of the synthesized samples was between 11 and 45 nm, which was found to be dependent on both pH value of the reaction and annealing temperatures. However, lattice parameters, interplane spacing and grain size were controlled by varying the annealing temperature. Magnetic characterization of the nano-samples were carried out using a vibrating sample magnetometer at room temperature. The saturation magnetization was computed and found to lie between 5 and 67 emu/g depending on the particle size of the studied sample. The coercivity was found to exhibit non-monotonic behavior with the particle size. Such behavior can be accounted for by the combination between surface anisotropy and thermal energies. The ratio of remanence magnetization to saturation magnetization was found to exhibit almost linear dependence on the particle size.  相似文献   

7.
Microwave absorption properties of composite powders with low density   总被引:1,自引:0,他引:1  
The composites of barium ferrite coated on hollow ceramic microspheres were prepared using sol-gel technique. The crystal structure, morphology and microwave absorption properties of composite powders with different weight ratio of microspheres were studied with XRD, EDS, FESEM and vector network analyzer. The results show that the microwave absorption properties of composite powders are greatly improved. The maximum microwave loss of composite powders reaches 31 dB with an amount of 50 wt.% microspheres, and its density is only about 1.80 g/cm3. The effect of hollow ceramic microspheres on the microwave absorption property is also discussed.  相似文献   

8.
BaFe12O19 nanowire arrays having single magnetic domain size (≤460 nm) in anodic aluminum oxide (AAO) templates were prepared by sol-gel and self-propagating high-temperature synthesis techniques. The diameter of the nanowire arrays is approximately 70 nm and the length is about 2-4 μm. The specimens were characterized using X-ray diffraction, vibrating sample magnetometer, field emission scan electron microscope, atomic force microscopy and microwave vector network analyzer. The magnetic properties of BaFe12O19 nanowire arrays embedded in AAO templates were measured by VSM with a field up to 1274 KA/m at room temperature. The results indicate that the nanowire arrays exhibit large saturation magnetization and high coercivity in the range of 6000 Oe and an obvious magnetic anisotropy with the easy magnetizing axis along the length of the nanowire arrays, probably due to the shape anisotropy and magneto-crystalline anisotropy. Finally the microwave absorption properties of the nanowires were discussed.  相似文献   

9.
The crystalline structure and magnetic properties of M-type barium ferrite doped with small amounts of MnO2 (0, 0.25, 0.5, 0.75, 1.0, 1.5, and 2.0 wt%, respectively) have been investigated by means of XRD, SEM and VSM. The results show that the crystalline structures of barium ferrite are still M-type hexagonal structure and Mn ions are distributed homogeneously in both the grains and the grain boundaries. The saturation magnetization and magnetocrystalline anisotropy constants both reach the highest values when x=0.75 wt%. The displacement of Fe ions from 4f1 to 2b site is mainly responsible for the appearance of the maximum values.  相似文献   

10.
Mn–Zn ferrite nanoparticles (Mn1−xZnxFe2O4) are synthesized by a hydrothermal precipitation approach using metal sulfate solution and aqueous ammonia. The analysis methods of XRPD, TEM, TGA, and VSM are used to characterize the magnetic nanoparticles. Through the characterization of the precipitated nanoparticles, the effects of the reacting component proportions and preparation techniques on the Curie temperature, the magnetization, and the size distribution of Mn–Zn ferrite nanoparticles are discussed. Furthermore, the Mn–Zn ferrite nanoparticles are used to prepare ferrofluid. Variation of the magnetic properties of the ferrite nanoparticles with the composition content x of Zn and the magnetic moment of the nanoparticles are discussed.  相似文献   

11.
《Current Applied Physics》2014,14(9):1208-1211
The hollow BaFe12O19 submicron spheres (HBSSs) for advanced functional magnetic materials were synthesized successfully by self assembly method using diethyleneamine (DEA). The optimized concentration of DEA surfactant was found to be 1.1 mL with pH > 12.2 for the elaborate hollow sphere structure. The coercivity and remanence properties of HBSSs with 500-nm-sized showed 4.2 kOe (iHc) and 2.2 kG (Br), respectively. These results revealed that HBSSs particles were successfully synthesized to submicron size with the quantitative compounding of barium and ferrite precursors.  相似文献   

12.
陈大明  李元勋  韩莉坤  龙超  张怀武 《中国物理 B》2016,25(6):68403-068403
Barium ferrite(Ba M) thin films are deposited on platinum coated silicon wafers by pulsed laser deposition(PLD).The effects of deposition substrate temperature on the microstructure,magnetic and microwave properties of Ba M thin films are investigated in detail.It is found that microstructure,magnetic and microwave properties of Ba M thin film are very sensitive to deposition substrate temperature,and excellent Ba M thin film is obtained when deposition temperature is 910℃ and oxygen pressure is 300 m Torr(1 Torr = 1.3332×10~2Pa).X-ray diffraction patterns and atomic force microscopy images show that the best thin film has perpendicular orientation and hexagonal morphology,and the crystallographic alignment degree can be calculated to be 0.94.Hysteresis loops reveal that the squareness ratio(M_r/M_s) is as high as 0.93,the saturated magnetization is 4004 Gs(1 Gs = 10~4T),and the anisotropy field is 16.5 kOe(1 Oe = 79.5775 A·m~(-1)).Ferromagnetic resonance measurements reveal that the gyromagnetic ratio is 2.8 GHz/kOe,and the ferromagnetic resonance linewith is108 Oe at 50 GHz,which means that this thin film has low microwave loss.These properties make the Ba M thin films have potential applications in microwave devices.  相似文献   

13.
Titania hollow submicrospheres with mixed phase (anatase-brookite or anatase-rutile) were synthesized via the combination of hydrothermal treatment and calcination of submicrospheres consisting of a polystyrene core and an amorphous TiO2 shell. After hydrothermal treatment, amorphous titania shell could be transformed to anatase-brookite shell consisting of loose packed titania nanocrystals, which could be further converted to anatase-brookite (below 700 °C) or anatase-rutile titania (700-800 °C) hollow spheres with rough surface via calcination. The loose packing of titania nanocrystals not only inhibited the transformation temperature from anatase to rutile, but also provided titania hollow submicrospheres with high photodegradation activity of Rhodamine B. The photocatalytic activity of titania hollow spheres increased firstly then decreased when the calcination temperature was varied in the range of 450-800 °C, while hollow spheres obtained via calcinating at 700 °C exhibited the highest photocatalytic activity, which was five times higher than that of counterpart without hydrothermal treatment.  相似文献   

14.
通过化学溶液沉积法制备的BiFeO3-BaTiO3薄膜在室温下能够同时显现铁电性及铁磁性。在600-700℃的条件下,以Pt/TiOx/SiO2/Si为载体,能够成功得到钙钛矿单相0.7BiFeO3-0.3BaTiO3薄膜。随着结晶温度上升,晶粒持续增长,最终在700℃到达更高的结晶度。由于0.7BiFeO3-0.3BaTiO3薄膜的绝缘电阻较低,它所显现的极化(P)-电场(E)磁滞回线较弱。尽管如此,由于在0.7BiFeO3-0.3BaTiO3薄膜铁的位置上添加锰,高作用场的漏电流有效地减少,最终铁电性质得到了提高。在室温下,添加了摩尔分数5%的锰的0.7BiFeO3-0.3BaTiO3薄膜同时显现铁电极化和铁磁磁化磁滞回线。  相似文献   

15.
通过化学溶液沉积法制备的BiFeO3-BaTiO3薄膜在室温下能够同时显现铁电性及铁磁性。在600-700℃的条件下,以Pt/TiOx/SiO2/Si为载体,能够成功得到钙钛矿单相0.7BiFeO3-0.3BaTiO3薄膜。随着结晶温度上升,晶粒持续增长,最终在700℃到达更高的结晶度。由于0.7BiFeO3-0.3BaTiO3薄膜的绝缘电阻较低,它所显现的极化(P)-电场(E)磁滞回线较弱。尽管如此,由于在0.7BiFeO3-0.3BaTiO3薄膜铁的位置上添加锰,高作用场的漏电流有效地减少,最终铁电性质得到了提高。在室温下,添加了摩尔分数5%的锰的0.7BiFeO3-0.3BaTiO3薄膜同时显现铁电极化和铁磁磁化磁滞回线。  相似文献   

16.
通过化学溶液沉积法制备的BiFeO3-BaTiO3薄膜在室温下能够同时显现铁电性及铁磁性。在600-700℃的条件下,以Pt/TiOx/SiO2/Si为载体,能够成功得到钙钛矿单相0.7BiFeO3-0.3BaTiO3薄膜。随着结晶温度上升,晶粒持续增长,最终在700℃到达更高的结晶度。由于0.7BiFeO3-0.3BaTiO3薄膜的绝缘电阻较低,它所显现的极化(P)-电场(E)磁滞回线较弱。尽管如此,由于在0.7BiFeO3-0.3BaTiO3薄膜铁的位置上添加锰,高作用场的漏电流有效地减少,最终铁电性质得到了提高。在室温下,添加了摩尔分数5%的锰的0.7BiFeO3-0.3BaTiO3薄膜同时显现铁电极化和铁磁磁化磁滞回线。  相似文献   

17.
Synthesis and characterization of Ni-Zn ferrite nanoparticles   总被引:1,自引:0,他引:1  
Nickel zinc ferrite nanoparticles NixZn1−xFe2O4 (x=0.1, 0.3, 0.5) have been synthesized by a chemical co-precipitation method. The samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, electron paramagnetic resonance, dc magnetization and ac susceptibility measurements. The X-ray diffraction patterns confirm the synthesis of single crystalline NixZn1−xFe2O4 nanoparticles. The lattice parameter decreases with increase in Ni content resulting in a reduction in lattice strain. Similarly crystallite size increases with the concentration of Ni. The magnetic measurements show the superparamagnetic nature of the samples for x=0.1 and 0.3 whereas for x=0.5 the material is ferromagnetic. The saturation magnetization is 23.95 emu/g and increases with increase in Ni content. The superparamagnetic nature of the samples is supported by the EPR and ac susceptibility measurement studies. The blocking temperature increases with Ni concentration. The increase in blocking temperature is explained by the redistribution of the cations on tetrahedral (A) and octahedral (B) sites.  相似文献   

18.
Functionalized multiwall carbon nanotubes (MWCNT-COOH) were decorated with crystalline cobalt ferrite nanoparticles (CoFe2O4 NPs) by co-precipitation reaction to form MWCNT-COOH/CoFe2O4 hybrid. The hybrid was characterized by X-ray diffraction analysis, transmission electron microscopy (TEM), Fourier transfom infrared spectroscopy and vibrating sample magnetometry. The results confirmed that MWCNTs and CoFe2O4 NPs coexisted in the hybrid. The TEM results showed a thick layer of CoFe2O4 was intimately connected to the surface of MWCNTs. The saturation magnetization value of the hybrid was 11.5 emu/g. There has been a high frequency fluctuation in conductivity, however, above all dc conductivity changes and resulting activation energy is calculated from the Arrhenius plots. It is found to vary with the temperature regions. This can be attributed to the existence of a conventional temperature independent tunneling conduction mechanism, which can be also explained that the metallic conduction is a dominant mechanism around room temperature. The ac conductivity of MWCNT-COOH/CoFe2O4 hybrid might also be a consequence of the predictions of the universal dynamic response and the ‘n’ power exponents could be determined with lower concentration of the addition in the hybrids.  相似文献   

19.
《Current Applied Physics》2014,14(7):980-990
A study on Lithium ferrite/chitosan nanocomposite (LFCN), easily moldable into arbitrary shapes, as the conducting polymer and ferromagnetic characteristics is presented. The composite material is produced in the presence of Li0.5Cr0.1Fe2.4O4 and Li0.5Co0.1Fe2.4O4 nanoparticle by ex-situ polymerizations process. Various characterizations techniques have been used to explore the characteristic of the synthesized products. The frequency dependent dielectric properties and electrical conductivity of all the samples have been measured through complex impedance plot in the frequency range of 1 kHz–6 MHz at room temperature. It was observed that in case of (LFCN), fluctuation in value of (ε′) and (ε″) is ceased over the frequency range of 4 Mz which can be attributed to the steady storage and dissipation of energy in the nanocomposite system. Moreover, it is also observed that electrical conductivity of (LFCN) increases with frequency and its value was found to be (0.032–0.048) (ohm-cm)−1 in frequency range of 1 kHz–6 MHz. Due to its low cost, a simple synthesis process and high flexibility, the proposed LFCN may find applications in various types of electronic components.  相似文献   

20.
Standard ceramic technique was used to prepare the ferrite Co1−xMgxFe2O4 0.0?x?1. FTIR and X-ray diffraction were performed to assure the formation of the sample in the proper form. The obtained lattice parameter was interpreted on the basis of cation distribution. The replacement of Co2+ instead of Mg2+ on B sites expands slightly the size of the lattice. The sample MgFe2O4 does not exhibit high thermal stability. The general trend of χM with Mg content is the decrease in its values by decreasing x from 1 to ≈0.6. The obtained data was interpreted also on the basis of redistribution of iron ions between the two sublattices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号