首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Researches on cargo delivery systems have received burgeoning attention and advanced rapidly. For synthetic nanodevices, polymer nanoassemblies and their inorganic‐organic hybrid materials, especially smart mesoporous silica nanoparticle (MSN)‐polymer hybrids (e. g., MSN@PGMAs), have attracted increasing attention in recent years. Their superior characteristics and unique features such as dynamic transition of morphology endow them the ability to efficiently entrap cargo molecules and undergo smart cargo delivery and release in response to various external stimuli. In this Personal Account, we present our recent research progress in the construction of cargo delivery systems based on polymers, poly(glycidyl methacrylate) (PGMA) and its derivatives in particular, ranging from polymer nanoparticles, reverse micelles, to vesicles and reverse vesicles, and their performance in the delivery and controlled release of model molecules and therapeutic agents. Significantly, MSN‐PGMA hybrid nanoassemblies (MSN@PGMAs), constructed with the aid of atom transfer radical polymerization, host‐guest interactions, or layer‐by‐layer self‐assembly techniques, and their potential bio‐related applications and anti‐bacterial applications as new nanocarriers are reviewed. Finally, the prospects and challenges of such nanoplatforms are also discussed.  相似文献   

2.
Herein, we report a strategy for exploiting nanoscale metal–organic frameworks (nano‐MOFs) as templates for the layer‐by‐layer (LbL) assembly of polyelectrolytes. Because small‐molecule drugs or imaging agents cannot be efficiently encapsulated by polyelectrolyte nanocapsules, we investigated two promising and biocompatible polymers (comb‐shaped polyethylene glycol (PEG) and hyperbranched polyglycerol‐based PEG) for the conjugation of model drugs and imaging agents, which were then encapsulated inside the nano‐MOF‐templated nanocapsules. Furthermore, we also systemically explored the release kinetics of the encapsulated conjugates, and examined how the encapsulation and/or release processes could be controlled by varying the composition and architecture of the polymers. We envision that our nano‐MOFs‐templated nanocapsules, through combining with small‐molecule–polymer conjugates, will represent a new type of delivery system that could open up new opportunities for biomedical applications.  相似文献   

3.
We present the self‐assembly of redox‐responsive polymer nanocontainers comprising a cyclodextrin vesicle core and a thin reductively cleavable polymer shell anchored via host–guest recognition on the vesicle surface. The nanocontainers are of uniform size, show high stability, and selectively respond to a mild reductive trigger as revealed by dynamic light scattering, transmission electron microscopy, atomic force microscopy, a quantitative thiol assay, and fluorescence spectroscopy. Live cell imaging experiments demonstrate a specific redox‐responsive release and cytoplasmic delivery of encapsulated hydrophilic payloads, such as the pH‐probe pyranine, and the fungal toxin phalloidin. Our results show the high potential of these stimulus‐responsive nanocontainers for cell biological applications requiring a controlled delivery.  相似文献   

4.
Free‐base and nickel porphyrin–diaminopurine conjugates were formed by hydrogen‐bond directed assembly on single‐stranded oligothymidine templates of different lengths into helical multiporphyrin nanoassemblies with highly modular structural and chiroptical properties. Large red‐shifts of the Soret band in the UV/Vis spectroscopy confirmed strong electronic coupling among assembled porphyrin–diaminopurine units. Slow annealing rates yielded preferentially right‐handed nanostructures, whereas fast annealing yielded left‐handed nanostructures. Time‐dependent DFT simulations of UV/Vis and CD spectra for model porphyrin clusters templated on the canonical B‐DNA and its enantiomeric form, were employed to confirm the origin of observed chiroptical properties and to assign the helicity of porphyrin nanoassemblies. Molar CD and CD anisotropy g factors of dialyzed templated porphyrin nanoassemblies showed very high chiroptical anisotropy. The DNA‐templated porphyrin nanoassemblies displayed high thermal and pH stability. The structure and handedness of all assemblies was preserved at temperatures up to +85 °C and pH between 3 and 12. High‐resolution transition electron microscopy confirmed formation of DNA‐templated nickel(II) porphyrin nanoassemblies and their self‐assembly into helical fibrils with micrometer lengths.  相似文献   

5.
Dihydroartemisinin (DHA) has attracted increasing attention as an anticancer agent. However, using DHA to treat cancer usually depends on the synergistic effects of exogenous components, and the loss of DHA during delivery reduces its effectiveness in cancer therapy. Reported herein is a programmed release nanoplatform of DHA to synergistically treat cancer with a Fe‐TCPP [(4,4,4,4‐(porphine‐5,10,15,20‐tetrayl) tetrakis(benzoic acid)] NMOF (nanoscale MOF) having a CaCO3 mineralized coating, which prevents DHA leakage during transport in the bloodstream. When the nanoplatform arrives at the tumor site, the weakly acidic microenvironment and high concentration of glutathione (GSH) trigger DHA release and TCPP activation, enabling the synergistic Fe2+‐DHA‐mediated chemodynamic therapy, Ca2+‐DHA‐mediated oncosis therapy, and TCPP‐mediated photodynamic therapy. In vivo experiments demonstrated that the nanoplatform showed enhanced anticancer efficiency and negligible toxicity.  相似文献   

6.
This study was aimed to design core–sheath‐structured polymeric fibers for protein delivery through emulsion electrospinning to enhance the encapsulation efficiency (EE), structural integrity, and activity retention, and to achieve controllable protein release. Integral core–sheath structure was achieved for electrospun fibers with lysozyme loading efficiency of 93.3% and the specific activity retention (SAR) of 64.6%, while the surface protein content (SP) was as low as 4.2%. The emulsion components were optimized to minimize the burst release and extend the release period, and the release profiles were found to be closely related with the fiber characteristics such as the SPs. An initial burst release as low as 6.2% followed by gradual release for 33 days was indicated from poly(ethylene glycol)‐poly(DL ‐lactide) (PELA) fibers. The gradual protein release was determined by a competition of fiber collapse leading to accelerated release and fiber fusion leading to decelerated release. Dependent on the matrix polymer and protein encapsulated, the degradation behaviors of the fiber matrices were correlated with the release rate and the effective lifetime of the drug release. The core–sheath‐structured ultrafine fibers could protect the structural integrity and bioactivity of encapsulated lysozyme, and an increase in the protective effect was demonstrated for fibers prepared from PELA matrix. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Inspired by natural biomineralization processes, a simple and universal strategy is introduced to construct a biomimetic nanoplatform for systemic codelivery of a nucleic acid therapeutic (G3139) and a chemotherapeutic drug doxorubicin (DOX). This codelivery system was synthesized through one‐pot supramolecular self‐assembly of G3139, DOX, and FeII ions through multiple coordination interactions, followed by an adapted surface mineralization with metal–organic frameworks. The resulting core–shell nanoparticles have uniform size, well‐defined nanosphere structure, robust colloidal stability, ultrahigh drug loading efficiency and capacity, and precisely adjustable ratios of two therapeutic agents. The system can efficiently accumulate in the tumor, allowing for sensitive MRI detection and synergistical inhibition of tumor growth without apparent systemic toxicity.  相似文献   

8.
Novel magnetic‐targeted pH‐responsive drug delivery system have been designed by the layer‐by‐layer self‐ assembly of the polyelectrolytes (oligochitosan as the polycation and sodium alginate as the polyanion) via the electrostatic interaction with the oil‐in‐water type hybrid emulsion droplets containing the superparamagnetic ferroferric oxide nanoparticles and drug molecules [dipyridamole (DIP)] as cores. Here the drug molecules were directly encapsulated into the interior of droplets without etching the templates and refilling with the desired guest molecules. The drug‐delivery system showed high encapsulation efficiency of drugs and drug‐loading capacity. The cumulative release ratio of dipyridamole from the oligochitosan/sodium alginate multilayer‐encapsulated magnetic hybrid emulsion droplets (DIP/Fe3O4‐OA/OA)@(OCS/SAL)4 was up to almost 100% after 31 h at pH 1.8. However, the cumulative release ratio was only 3.3% at pH 7.4 even after 48 h. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
Supramolecular nanoassemblies that respond to the presence of proteins are of great interest, as aberrations in protein concentrations represent the primary imbalances found in a diseased state. We present here a molecular design, syntheses, and study of facially amphiphilic dendrimers that respond to the presence of the protein, immunoglobulin G. It is of particular interest that the ligand functionality, utilized for causing the binding-induced disassembly, be lipophilic. Demonstration of binding with lipophilic ligands greatly expands the repertoire of binding-induced disassembly, since this covers a rather large class of ligand moieties designed for proteins and these provide specific insights into the mechanistic pathways that are available for the binding-induced disassembly process. Here, we describe the details of the binding induced disassembly, including the change in size of the assembly in response to proteins, concurrent release of noncovalently encapsulated guest molecules, and the specificity of the disassembly process.  相似文献   

10.
CRISPR/Cas9 system is a powerful toolbox for gene editing. However, the low delivery efficiency is still a big hurdle impeding its applications. Herein, we report a strategy to deliver Cas9‐sgPlk‐1 plasmids (CP) by a multifunctional vehicle for tumor therapy. We condensed CPs on TAT peptide‐modified Au nanoparticles (AuNPs/CP, ACP) via electrostatic interactions, and coated lipids (DOTAP, DOPE, cholesterol, PEG2000‐DSPE) on the ACP to form lipid‐encapsulated, AuNPs‐condensed CP (LACP). LACP can enter tumor cells and release CP into the cytosol by laser‐triggered thermo‐effects of the AuNPs; the CP can enter nuclei by TAT guidance, enabling effective knock‐outs of target gene (Plk‐1) of tumor (melanoma) and inhibition of the tumor both in vitro and in vivo. This AuNPs‐condensed, lipid‐encapsulated, and laser‐controlled delivery system provides a versatile method for high efficiency CRISPR/Cas9 delivery and targeted gene editing for treatment of a wide spectrum of diseases.  相似文献   

11.
A small amphiphile that contains a coumarin unit and alkynyl groups, as a two‐photon‐cleavable segment and polymerizable groups, respectively, was designed and synthesized. The amphiphile showed a critical aggregation concentration of about 4.6×10?5 M and formed a vesicle‐type assembly. The formed vesicles were stabilized by in situ “click” polymerization without altering their morphology. Hydrophobic and hydrophilic guests can be encapsulated within the vesicle membrane and inside the aqueous core of the vesicle, respectively. The loaded guests can be released from the vesicle by using UV or near‐IR stimuli, through splitting up the amphiphilic structure of the amphiphile. Distinguished dose‐controlled photorelease of the polymeric vesicle is achieved with the maintenance of vesicular integrity, which makes the guest release dependent on the amount of cleavage of the amphiphilic structure during irradiation. This study provides a potential strategy for the development of versatile and stable drug‐delivery systems that offer sustained and photo‐triggered release.  相似文献   

12.
Recent work regarding the Layer by Layer (LbL) engineering of poly(lactide-co-glycolide) nanoparticles (PLGA NPs) is reviewed here.The LbL engineering of PLGA NPs is applied as a means of generating advanced drug delivery devices with tailored recognition,protection,cargo and release properties.LbL in combination with covalent chemistry is used to attach PEG and folic acid to control cell uptake and direct it towards cancer cells.LbL coatings composed of chitosan and alginate show low protein interactions and can be used as an alternative to Pegylation.The assembly on top of LbL coatings of lipid layers composed of variable percentages of 1,2-dioleoyl-sn-glycero-3-choline (DOPC) and 1,2-dioleoyl-sn-glycero-3-phosphoL-serine (DOPS) increases NP uptake and directs the NPs towards the endoplasmic reticulum.The antibody anti-TNF-α is encapsulated forming a complex with alginate that is assembled LbL on top of PLGA NPs.The antibody is released in cell culture following first order kinetics.The release kinetics of encapsulated molecules inside PLGA NPs are studied when the PLGA NPs are coated via LbL with different polyelectrolytes.The intracellular release of encapsulated Doxorubicin is studied in the HepG2 cell line by means of Fluorescence Lifetime Imaging.  相似文献   

13.
Drug‐delivery systems that medically transport active molecules to diseased cells, in a controlled manner, have gained much attention in recent years. Yoctowell (1 yL=8 nm3 that is, 10?24 L volume) cavities on magnetic silica nanoparticles were used for the encapsulation and release of the drug molecule, “mitoxantrone ( MTZ )”, and controlled using naturally occurring stimuli, that is, pH. First, MTZ was encapsulated from a bulk solution under physiological conditions, and then released from the yoctowells, in a controlled manner, by manipulating the pH (7.2–3.0). The sustained release of MTZ , the recovery of active yoctowells after the release process and magnetic properties of nanoparticles provide potential for development of a new generation of drug‐delivery system.  相似文献   

14.
NIR light responsive nanoplatforms hold great promise for on‐demand drug release in precision cancer medicine. However, currently available systems utilize “always‐on” photothermal transducers that lack target specificity, and thus inaccurately differentiate tumors from normal tissues. Developed here is a theranostic nanoplatform featuring H2S‐mediated in situ production of NIR photothermal agents for imaging‐guided and photocontrolled drug release. The system targets H2S‐rich cancers. This nanoplatform shows H2S‐activatable NIR‐II emission and NIR light controllable release of the drug Camptothecin‐11. Upon administering the system to HCT116 tumor‐bearing mice, the tumor is greatly suppressed with minimal side effects, arising from the synergy of the cancer‐specific and NIR light activated therapy. This theranostic nanoplatform thus sheds light on precision medicine with guidance through NIR‐II imaging.  相似文献   

15.
Natural halloysite nanotubes (HNTs) show unique hollow structure, high aspect ratio and adsorption ability, good biocompatibility, and low toxicity, which allow for various biomedical applications in the diagnosis and treatment of diseases. Here, advances in self‐assembly of halloysite for cell capturing and bacterial proliferation, coating on biological surfaces and related drug delivery, bone regeneration, bioscaffolds, and cell labeling are summarized. The in vivo toxicity of these clay nanotubes is discussed. Halloysite allows for 10–20% drug loading and can extend the delivery time to 10–100 h. These drug‐loaded nanotubes are doped into the polymer scaffolds to release the loaded drugs. The rough surfaces fabricated by self‐assembly of the clay nanotubes enhance the interactions with tumor cells, and the cell capture efficacy is significantly improved. Since halloysite has no toxicity toward microorganisms, the bacteria composed within these nanotubes can be explored in oil/water emulsion for petroleum spilling bioremediation. Coating of living cells with halloysite can control the cell growth and is not harmful to their viability. Quantum dots immobilized on halloysite were employed for cell labeling and imaging. The concluding academic results combined with the abundant availability of these natural nanotubes promise halloysite applications in personal healthcare and environmental remediation.  相似文献   

16.
In order to obtain dual‐stimuli‐responsive (temperature/pH) alginate beads that exhibit LCST close to human body temperature for sustained drug release applications, poly (NIPAAm‐co‐AAm) hydrogel (with LCST 37.5°C) were selected and associated with calcium alginate to prepare inorganic–organic hybrid biomineralized polysaccharide alginate beads via a one‐step method in this paper. Scanning electron microscopy (SEM) and energy dispersive X‐ray spectrometer (EDS) results demonstrated that calcium phosphate could not only be found in the surface but also in the cross‐section of biomineralized polysaccharide beads. Both equilibrium swelling and indomethacin release behavior were found to be pH‐ and thermo‐responsive. In addition, indomethacin release profile could be sustained with a inorganic–organic hybrid membrane: the release amount reached 96% within 4 hr for the unmineralized beads, while a drug release of only 64% obtained after subjecting the biomineralized polysaccharide beads to the same treatment. These results indicate that the biomineralized polysaccharide membrane could prevent the permeability of the encapsulated drug and reduce the drug release rate effectively. The studied system has the potential to be used as an effective smart sustainable delivery system for biomedical applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Photodynamic therapy (PDT) has extraordinary promise for the treatment of many cancers. However, its clinical progress is impaired by the intrinsic hypoxic tumor microenvironment that limits PDT efficacy and the safety concern associated with biological specificity of photosensitizers or vehicles. Now it is demonstrated that rationally designed DNA nanosponges can load and delivery photosensitizer effectively, target tumor precisely, and relieve hypoxia‐associated resistance remarkably to enhance the efficacy of PDT. Specifically, the approach exhibits a facile assembly process, provides programmable and versatile nanocarriers, and enables robust in vitro and in vivo anti‐cancer efficacy with excellent biosafety. These findings represent a practical and safe approach by designer DNA nanoassemblies to combat cancer effectively and suggest a powerful strategy for broad biomedical application of PDT.  相似文献   

18.
We explored phase separation and self‐assembly of perfluoroalkyl segments at the surface of polymer films obtained from latices of semifluorinated acrylate copolymers and the corresponding latex blends of nonfluorinated and semifluorinated polyacrylates. With laser‐induced secondary mass spectrometry the fluorine distribution was measured after annealing above the minimum film‐forming temperature of the polymers up to a depth of several micrometers. Depth profiles of a semifluorinated acrylate homopolymer and latex blends thereof with fluorine‐free alkylacrylates with 25, 50, and 75 mol % semifluorinated acrylate as well as a copolymer comprised of alkyl acrylate and semifluorinated acrylate (50/50 mol %) were investigated. In the case of latex blends containing both semifluorinated polyacrylates and fluorine‐free or low‐fluorine polymers, self‐assembly accounted for enrichment of the perfluoroalkyl segments at the surface. Coatings exhibiting low surface energy and having a substantially reduced total fluorine content were obtained. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 360–367, 2003  相似文献   

19.
Nanocarrier-mediated drug delivery is a promising strategy to maximize the power of chemotherapy and minimize side effects. However, current approaches show insufficient drug-loading capacity and inefficient drug release, and require complex modification processes. Attempts to enhance one of these features often compromise other merits. We describe here a block copolymer assembly system that combines desirable characteristics. The design of self-immolative and crosslinkable hydrophobic moieties offer stable and high encapsulation. Redox-triggerable polymer self-immolation promotes drug release by switching the hydrophobic core into completely hydrophilic chains. The reactive amine handles, presented on their surface, allow “plug to direct” modification with targeting ligands. Functionalized nanoassemblies have been programmed to target specific subcellular compartments. The simplicity, versatility, and efficacy of the system open up possibilities for an all-in-one delivery system.  相似文献   

20.
Polymeric nanoparticles are promising delivery platforms for various biomedical applications. One of the main challenges toward the development of therapeutic nanoparticles is the premature disassembly and release of the encapsulated drug. Among the different strategies to enhance the kinetic stability of polymeric nanoparticles, shell‐ and core‐crosslinking have been shown to provide robust character, while creating a suitable environment for encapsulation of a wide range of therapeutics, including hydrophilic, hydrophobic, metallic, and small and large biomolecules, with gating of their release as well. The versatility of shell‐ and core‐crosslinked nanoparticles is driven from the ease by which the structures of the shell‐ and core‐forming polymers and crosslinkers can be modified. In addition, postmodification with cell‐recognition moieties, grafting of antibiofouling polymers, or chemical degradation of the core to yield nanocages allow the use of these robust nanostructures as “smart” nanocarriers. The building principles of these multifunctional nanoparticles borrow analogy from the synthesis, supramolecular assembly, stabilization, and dynamic activity of the naturally driven biological nanoparticles such as proteins, lipoproteins, and viruses. In this review, the chemistry involved during the buildup from small molecules to polymers to covalently stabilized nanoscopic objects is detailed, with contrast of the strategies of the supramolecular assembly of polymer building blocks followed by intramicellar stabilization into shell‐, core‐, or core–shell‐crosslinked knedel‐like nanoparticles versus polymerization of polymers into nanoscopic molecular brushes followed by further intramolecular covalent stabilization events. The rational design of shell‐crosslinked knedel‐like nanoparticles is then elaborated for therapeutic packaging and delivery, with emphasis on the polymer chemistry aspects to accomplish the synthesis of such nanoparticulate systems. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号