首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
纳米粒子在不互溶两相间的相转移在催化剂的循环利用、药物输送等领域发挥着重要的作用.环境响应性纳米粒子因兼具纳米粒子的优点和刺激响应的特性而受到了广泛的关注.环境响应型纳米粒子相转移的出现使相转移过程更为高效、可逆且智能化,已展现出了广阔的应用前景.本文综述了近年来环境响应型纳米粒子在不互溶两相间转移的研究进展,主要内容...  相似文献   

2.
Ionic liquids (ILs) with a reversible hydrophobic–hydrophilic transition were developed, and they exhibited unique phase behavior with H2O: monophase in the presence of CO2, but biphase upon removal of CO2 at room temperature and atmospheric pressure. Thus, coupling of reaction, separation, and recovery steps in sustainable chemical processes could be realized by a reversible liquid–liquid phase transition of such IL‐H2O mixtures. Spectroscopic investigations and DFT calculations showed that the mechanism behind hydrophobic–hydrophilic transition involved reversible reaction of CO2 with anion of the ILs and formation of hydrophilic ammonium salts. These unique IL‐H2O systems were successfully utilized for facile one‐step synthesis of Au porous films by bubbling CO2 under ambient conditions. The Au porous films and the ILs were then separated simultaneously from aqueous solutions by bubbling N2, and recovered ILs could be directly reused in the next process.  相似文献   

3.
Organocatalysts promote a range of C?N bond forming reactions of amines with CO2. Herein, we review these reactions and attempt to identify the unifying features of the catalysts that allows them to promote a multitude of seemingly unrelated reactions. Analysis of the literature shows that these reactions predominantly proceed by carbamate salt formation in the form [BaseH][RR′NCOO]. The anion of the carbamate salt acts as a nucleophile in hydrosilane reductions of CO2, internal cyclization reactions or after dehydration as an electrophile in the synthesis of urea derivatives. The reactions are enhanced by polar aprotic solvents and can be either promoted or hindered by H‐bonding interactions. The predominant role of all types of organic and salt catalysts (including ionic liquids, ILs) is the stabilization of the carbamate salt, mostly by acting as a base. Catalytic enhancement depends on the combination of the amine, the base strength, the solvent, steric factors, ion pairing and H‐bonding. A linear relationship between the base strength and the reaction yield has been demonstrated with IL catalysts in the synthesis of formamides and quinazoline‐2,4‐diones. The role of organocatalysts in the reactions indicates that all bases of sufficient strength should be able to catalyze the reactions. However, a physical limit to the extent of a purely base catalyzed reaction mechanism should exist, which needs to be identified, understood and overcome by synergistic or alternative methods.  相似文献   

4.
Depending on the amount of methanol present in solution, CO2 adducts of N‐heterocyclic carbenes (NHCs) and N‐heterocyclic olefins (NHOs) have been found to be in fully reversible equilibrium with the corresponding methyl carbonate salts [EMIm][OCO2Me] and [EMMIm][OCO2Me]. The reactivity pattern of representative 1‐ethyl‐3‐methyl‐NHO–CO2 adduct 4 has been investigated and compared with the corresponding NHC–CO2 zwitterion: The protonation of 4 with HX led to the imidazolium salts [NHO–CO2H][X], which underwent decarboxylation to [EMMIm][X] in the presence of nucleophilic catalysts. NHO–CO2 zwitterion 4 can act as an efficient carboxylating agent towards CH acids such as acetonitrile. The [EMMIm] cyanoacetate and [EMMIm]2 cyanomalonate salts formed exemplify the first C?C bond‐forming carboxylation reactions with NHO‐activated CO2. The reaction of the free NHO with dimethyl carbonate selectively led to methoxycarbonylated NHO, which is a perfect precursor for the synthesis of functionalized ILs [NHO–CO2Me][X]. The first NHO‐SO2 adduct was synthesized and structurally characterized; it showed a similar reactivity pattern, which allowed the synthesis of imidazolium methyl sulfites upon reaction with methanol.  相似文献   

5.
Catalytic fluorolactonisations of aromatic carboxylic acids have been developed. The reactions proceed under mild conditions using the commercially available reagent Selectfluor. A weak phase transfer of the reagent mediated by Na2CO3 allows the reaction to be conducted in non‐polar solvents. Furthermore, by the use of a catalytic amount of (DHQ)2PHAL (hydroquinine 1,4‐phthalazinediyl diether), the first asymmetric fluorolactonisation has been achieved. The corresponding isobenzofuran core can be found in many biologically active molecules.  相似文献   

6.
Homogeneous metal complex and salt catalysts were developed for the reductive transformation of CO2 with Si‐based reducing agents. Cu‐bisphosphine complexes were found to be excellent catalysts for the hydrosilylation of CO2 with polymethylhydrosiloxane (PMHS). The Cu complexes also showed high catalytic activity and a wide substrate scope for formamide synthesis from amines, CO2, and PMHS. Simple fluoride salts such as tetrabutylammonium fluoride acted as good catalysts for the reductive conversion of CO2 to formic acid in the presence of hydrosilane, disilane, and metallic Si. Based on the kinetics, isotopic experiments, and in‐situ NMR measurements, the reaction mechanism for both catalyst systems, the Cu complex and the fluoride salt, have been proposed.  相似文献   

7.
Guanidines and amidines prove to be highly efficient metal‐free catalysts for the reduction of CO2 to methanol with hydroboranes such as 9‐borabicyclo[3.3.1]nonane (9‐BBN) and catecholborane (catBH). Nitrogen bases, such as 1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene (TBD), 7‐methyl‐1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene (Me‐TBD), and 1,8‐diazabicycloundec‐7‐ene (DBU), are active catalysts for this transformation and Me‐TBD can catalyze the reduction of CO2 to methoxyborane at room temperature with TONs and TOFs of up to 648 and 33 h?1 (25 °C), respectively. Formate HCOOBR2 and acetal H2C(OBR2)2 derivatives have been identified as reaction intermediates in the reduction of CO2 with R2BH, and the first C?H‐bond formation is rate determining. Experimental and computational investigations show that TBD and Me‐TBD follow distinct mechanisms. The N?H bond of TBD is reactive toward dehydrocoupling with 9‐BBN and affords a novel frustrated Lewis pair (FLP) that can activate a CO2 molecule and form the stable adduct 2 , which is the catalytically active species and can facilitate the hydride transfer from the boron to the carbon atoms. In contrast, Me‐TBD promotes the reduction of CO2 through the activation of the hydroborane reagent. Detailed DFT calculations have shown that the computed energy barriers for the two mechanisms are consistent with the experimental findings and account for the reactivity of the different boron reductants.  相似文献   

8.
The biomimetic CO2 hydration activity of Ru/Rh‐doped fullerenes was revealed by using density functional theory calculations. The mechanism of CO2 hydration on the proposed heterofullerenes followed the mechanistic action of α‐carbonic anhydrases, and consisted of the adsorption and deprotonation of H2O, CO2 interaction with hydroxyl groups, CO2 bending, and proton transfer to give the product. Free‐energy landscapes for the reaction showed the catalysts to be active for the reaction. H2O adsorption over the catalysts was exergonic whereas CO2 adsorption over the catalyst–OH complex was observed to be an endergonic process. Intramolecular proton transfer resulting in the final product, , was found to be the rate‐limiting step for the reaction on C56N3M (M=Ru/Rh), whereas H2O dissociation was found to be the rate‐limiting step for the reaction on C59M (M=Ru/Rh). C56N3M catalysts were found to be superior to C59M catalysts for biomimetic CO2 hydration, as indicated by the free‐energy landscapes and energy requirements.  相似文献   

9.
The hydrogenation of carbon dioxide involves the activation of the thermodynamically very stable molecule CO2 and formation of a C−H bond. Herein, we report that HCO2 and CO can be formed in the thermal reaction of CO2 with a diatomic metal hydride species, FeH. The FeH anions were produced by laser ablation, and the reaction with CO2 was analyzed by mass spectrometry and quantum‐chemical calculations. Gas‐phase HCO2 was observed directly as a product, and its formation was predicted to proceed by facile hydride transfer. The mechanism of CO2 hydrogenation in this gas‐phase study parallels similar behavior of a condensed‐phase iron catalyst.  相似文献   

10.
This paper reports on an ATR‐FTIR spectroscopic investigation of the CO2 absorption characteristics of a series of heterocyclic diamines: hexahydropyrimidine (HHPY), 2‐methyl and 2,2‐dimethylhexahydropyrimidine (MHHPY and DMHHPY), hexahydropyridazine (HHPZ), piperazine (PZ) and 2,5‐ and 2,6‐dimethylpiperazine (2,6‐DMPZ and 2,5‐DMPZ). By using in situ ATR‐FTIR the structure–activity relationship of the reaction between heterocyclic diamines and CO2 is probed. PZ forms a hydrolysis‐resistant carbamate derivative, while HHPY forms a more labile carbamate species with increased susceptibility to hydrolysis, particularly at higher CO2 loadings (>0.5 mol CO2/mol amine). HHPY exhibits similar reactivity toward CO2 to PZ, but with improved aqueous solubility. The α‐methyl‐substituted MHHPY favours HCO3? formation, but MHHPY exhibits comparable CO2 absorption capacity to conventional amines MEA and DEA. MHHPY show improved reactivity compared to the conventional α‐methyl‐ substituted primary amine 2‐amino‐2‐methyl‐1‐propanol. DMHHPY is representative of blended amine systems, and its reactivity highlights the advantages of such systems. HHPZ is relatively unreactive towards CO2. The CO2 absorption capacity CA (mol CO2/mol amine) and initial rates of absorption RIA (mol CO2/mol amine min?1) for each reactive diamine are determined: PZ: CA=0.92, RIA=0.045; 2,6‐DMPZ: CA=0.86, RIA=0.025; 2,5‐DMPZ: CA=0.88, RIA=0.018; HHPY: CA=0.85, RIA=0.032; MHHPY: CA=0.86, RIA=0.018; DMHHPY: CA=1.1, RIA=0.032; and HHPZ: no reaction. Calculations at the B3LYP/6‐31+G** and MP2/6‐31+G** calculations show that the substitution patterns of the heterocyclic diamines affect carbamate stability, which influences hydrolysis rates.  相似文献   

11.
Herein, the reaction between CO2 and piperidine, as well as commercially available functionalised piperidine derivatives, for example, those with methyl‐, hydroxyl‐ and hydroxyalkyl substituents, has been investigated. The chemical reactions between CO2 and the functionalised piperidines were followed in situ by using attenuated total reflectance (ATR) FTIR spectroscopy. The effect of structural variations on CO2 absorption was assessed in relation to the ionic reaction products identifiable by IR spectroscopy, that is, carbamate versus bicarbonate absorbance, CO2 absorption capacity and the mass‐transfer coefficient at zero loading. On absorption of CO2, the formation of the carbamate derivatives of the 3‐ and 4‐hydroxyl‐, 3‐ and 4‐hydroxymethyl‐, and 4‐hydroxyethyl‐substituted piperidines were found to be kinetically less favourable than the carbamate derivatives of piperidine and the 3‐ and 4‐methyl‐substituted piperidines. As the CO2 loading of piperidine and the 3‐ and 4‐methyl‐ and hydroxyalkyl‐substituted piperidines exceeded 0.5 moles of CO2 per mole of amine, the hydrolysis of the carbamate derivative of these amines was observed in the IR spectra collected. From the subset of amines analysed, the 2‐alkyl‐ and 2‐hydroxyalkyl‐substituted piperidines were found to favour bicarbonate formation in the reaction with CO2. Based on IR spectral data, the ability of these amines to form the carbamate derivatives was also established. Computational calculations at the B3LYP/6‐31+G** and MP2/6‐31+G** levels of theory were also performed to investigate the electronic/steric effects of the substituents on the reactivity (CO2 capture performance) of different amines, as well as their carbamate structures. The theoretical results obtained for the 2‐alkyl‐ and 2‐hydroxyalkyl‐substituted piperidines suggest that a combination of both the electronic effect exerted by the substituent and a reduction in the exposed area of the nitrogen atom play a role in destabilising the carbamate derivative and increasing its susceptibility to hydrolysis. A theoretical investigation into the structure of the carbamate derivatives of these amines revealed shorter N? C bond lengths and a less‐delocalised electron distribution in the carboxylate moiety.  相似文献   

12.
《Analytical letters》2012,45(9):2009-2024
Abstract

Adding additional components to supercritical carbon dioxide in supercritical fluid chromatography can extend or significantly alter the fluid solvating properties. Polar samples which are difficult to be analyzed with pure supercritical CO2 because of their high polarity can be separated by adding polar modifiers to supercritical CO2. In this paper, a new mixing device using a teflon high capacity filter for adding polar modifiers to carbon dioxide mobile phase is introduced. This new mixing device could keep the amount of modifier in the mobile phase constant for a much longer time than a saturator column. The amount of water or methanol dissolved in supercritical CO2 was measured by amperometric microsensor which is made of thin film of perfluorosulfonate ionomer(PFSI).  相似文献   

13.
Carbon dioxide (CO2) reduction in aqueous solutions is an attractive strategy for carbon capture and utilization. Cuprous oxide (Cu2O) is a promising catalyst for CO2 reduction as it can convert CO2 into valuable hydrocarbons and suppress the side hydrogen evolution reaction (HER). However, the nature of the active sites in Cu2O remains under debate because of the complex surface structure of Cu2O under reducing conditions, leading to limited guidance in designing improved Cu2O catalysts. This paper describes the functionality of surface‐bonded hydroxy groups on partially reduced Cu2O(111) for the CO2 reduction reaction (CO2RR) by combined density functional theory (DFT) calculations and experimental studies. We find that the surface hydroxy groups play a crucial role in the CO2RR and HER, and a moderate coverage of hydroxy groups is optimal for promotion of the CO2RR and suppression of the HER simultaneously. Electronic structure analysis indicates that the charge transfer from hydroxy groups to coordination‐unsaturated Cu (CuCUS) sites stabilizes surface‐adsorbed COOH*, which is a key intermediate during the CO2RR. Moreover, the CO2RR was evaluated over Cu2O octahedral catalysts with {111} facets and different surface coverages of hydroxy groups, which demonstrates that Cu2O octahedra with moderate coverage of hydroxy groups can indeed enhance the CO2RR and suppress the HER.  相似文献   

14.
The broadband light‐absorption ability of carbon dots (CDs) has inspired their application in photocatalysis, however this has been impeded by poor electron transfer inside the CDs. Herein, we report the preparation of Cu–N‐doped CDs (Cu‐CDs) and investigate both the doping‐promoted electron transfer and the performance of the CDs in photooxidation reactions. The Cu–N doping was achieved through a one‐step pyrolytic synthesis of CDs with Na2[Cu(EDTA)] as precursor. As confirmed by ESR, FTIR, and X‐ray photoelectron spectroscopies, the Cu species chelates with the carbon matrix through Cu–N complexes. As a result of the Cu–N doping, the electron‐accepting and ‐donating abilities were enhanced 2.5 and 1.5 times, and the electric conductivity was also increased to 171.8 μs cm?1. As a result of these enhanced properties, the photocatalytic efficiency of CDs in the photooxidation reaction of 1,4‐dihydro‐2,6‐dimethylpyridine‐3,5‐dicarboxylate is improved 3.5‐fold after CD doping.  相似文献   

15.
The photocatalytic CO2 reduction reaction (CRR) represents a promising route for the clean utilization of stranded renewable resources, but poor selectivity resulting from the competing hydrogen evolution reaction (HER) in aqueous solution limits its practical applicability. In the present contribution a photocatalyst with hydrophobic surfaces was fabricated. It facilitates an efficient three‐phase contact of CO2 (gas), H2O (liquid), and catalyst (solid). Thus, concentrated CO2 molecules in the gas phase contact the catalyst surface directly, and can overcome the mass‐transfer limitations of CO2, inhibit the HER because of lowering proton contacts, and overall enhance the CRR. Even when loaded with platinum nanoparticles, one of the most efficient HER promotion cocatalysts, the three‐phase photocatalyst maintains a selectivity of 87.9 %. Overall, three‐phase photocatalysis provides a general and reliable method to enhance the competitiveness of the CRR.  相似文献   

16.
Metal atoms and clusters exhibit chemical properties that are significantly different or totally absent in comparison to their bulk counterparts. Such peculiarity makes them potential building units for the generation of novel catalysts. Investigations of the gas‐phase reactions between size‐ and charge‐selected atoms/clusters and small molecules have provided fundamental insights into their intrinsic reactivity, thus leading to a guiding principle for the rational design of the single‐atom and cluster‐based catalysts. Especially, recent gas‐phase studies have elucidated that small molecules such as O2, CO2, and CH3I can be catalytically activated by negatively‐charged atoms/clusters via donation of a partial electronic charge. This Minireview showcases typical examples of such “reductive activation” processes promoted by anions of metal atoms and clusters. Here, we focus on anionic atoms/clusters of coinage metals (Cu, Ag, and Au) owing to the simplicity of their electronic structures. The determination of a correlation between their activation modes and the electronic structures might be helpful for the future development of innovative coinage metal catalysts.  相似文献   

17.
There is increasing interest in capturing H2 generated from renewables with CO2 to produce methanol. However, renewable hydrogen production is expensive and in limited quantity compared to CO2. Excess CO2 and limited H2 in the feedstock gas is not favorable for CO2 hydrogenation to methanol, causing low activity and poor methanol selectivity. Now, a class of Rh‐In catalysts with optimal adsorption properties to the intermediates of methanol production is presented. The Rh‐In catalyst can effectively catalyze methanol synthesis but inhibit the reverse water‐gas shift reaction under H2‐deficient gas flow and shows the best competitive methanol productivity under industrially applicable conditions in comparison with reported values. This work demonstrates a strong potential of Rh‐In bimetallic composition, from which a convenient methanol synthesis based on flexible feedstock compositions (such as H2/CO2 from biomass derivatives) with lower energy cost can be established.  相似文献   

18.
The effect of Rh dispersion on reforming of CH4 with CO2 over H‐Beta supported Rh catalysts has been investigated. The CH4 and CO2 conversion over the catalysts increase with increasing Rh loading from 0.5 wt% to 4.0 wt% in the reaction temperature range of 823–1123 K. The high TOF of CH4 over 0.5 wt% and 1.0 wt% Rh/H‐beta may be attributed to high dispersion of rhodium species. The catalysts before and after the reaction were characterized by XRD, TEM, and TG‐DTA and the results indicate the catalysts with Rh loading of 0.5 wt% and 1.0 wt% exhibiting high resistance to coke. Under controllable conditions, we confirm that the coke is originated from methane dissociation and can be substantially oxidized by active oxygen species dissociated from the adsorbed carbon dioxide on the catalyst with high dispersion of Rh species.  相似文献   

19.

Catalysis of cure reaction between N‐methylaniline‐blocked polyisocyanate and hydroxyl‐terminated polybutadiene was investigated using a variety of tertiary amine and organotin catalysts. The catalytic activity of amine and organotin compounds was determined from the cure‐time results. It was found that the activity of the catalyst depends upon the steric constrain around the catalytic center. The organotin compounds showed higher catalytic activity than the amine catalysts. FTIR results obtained under isothermal condition revealed that DABCO selectively catalyze the urethane formation reaction, whereas DBTDL catalyze both the allophanate formation and urethane formation reactions during curing process. The synergistic effect of amine and organotin mixed catalysts on the cure reaction was also investigated.  相似文献   

20.
Gas‐phase reactions of CO3.? with formic acid are studied using Fourier transform ion cyclotron resonance (FT‐ICR) mass spectrometry. Signal loss indicates the release of a free electron, with the formation of neutral reaction products. This is corroborated by adding traces of SF6 to the reaction gas, which scavenges 38 % of the electrons. Quantum chemical calculations of the reaction potential energy surface provide a reaction path for the formation of neutral carbon dioxide and water as the thermochemically favored products. From the literature, it is known that free electrons in the troposphere attach to O2, which in turn transfer the electron to O3. O3.? reacts with CO2 to form CO3.?. The reaction reported here formally closes the catalytic cycle for the oxidation of formic acid with ozone, catalyzed by free electrons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号