首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen sulfide (H2S) has multifunctional roles as a gas signaling molecule in living systems. However, the efficient detection and imaging of H2S in live animals is very challenging. Herein, we report the first radioisotope‐based immobilization technique for the detection, quantification, and in vivo imaging of endogenous H2S. Macrocyclic 64Cu complexes that instantly reacted with gaseous H2S to form insoluble 64CuS in a highly sensitive and selective manner were prepared. The H2S concentration in biological samples was measured by a thin‐layer radiochromatography method. When 64Cu–cyclen was injected into mice, an elevated H2S concentration in the inflamed paw was clearly visualized and quantified by Cerenkov luminescence and positron emission tomography (PET) imaging. PET imaging was also able to pinpoint increased H2S levels in a millimeter‐sized infarcted lesion of the rat heart.  相似文献   

2.
Hydrogen sulfide (H2S) has multifunctional roles as a gas signaling molecule in living systems. However, the efficient detection and imaging of H2S in live animals is very challenging. Herein, we report the first radioisotope‐based immobilization technique for the detection, quantification, and in vivo imaging of endogenous H2S. Macrocyclic 64Cu complexes that instantly reacted with gaseous H2S to form insoluble 64CuS in a highly sensitive and selective manner were prepared. The H2S concentration in biological samples was measured by a thin‐layer radiochromatography method. When 64Cu–cyclen was injected into mice, an elevated H2S concentration in the inflamed paw was clearly visualized and quantified by Cerenkov luminescence and positron emission tomography (PET) imaging. PET imaging was also able to pinpoint increased H2S levels in a millimeter‐sized infarcted lesion of the rat heart.  相似文献   

3.
A unique ruthenium(II) complex, bis(2,2′‐bipyridine)(4‐(3,4‐diaminophenoxy)‐2,2′‐bipyridine)ruthenium(II) hexafluorophosphate ([(Ru(bpy)2(dabpy)][PF6]2), has been designed and synthesized as a highly sensitive and selective luminescence probe for the imaging of nitric oxide (NO) production in living cells. The complex can specifically react with NO in aqueous buffers under aerobic conditions to yield its triazole derivative with a high reaction rate constant at the 1010 M ?1 s?1 level; this reaction is accompanied by a remarkable increase of the luminescence quantum yield from 0.13 to 2.2 %. Compared with organic probes, the new RuII complex probe shows the advantages of a large Stokes shift (>150 nm), water solubility, and a wide pH‐availability range (pH independent at pH>5). In addition, it was found that the new probe could be easily transferred into both living animal cells and plant cells by the coincubation method, whereas the triazole derivative was cell‐membrane impermeable. The probe was successfully used for luminescence‐imaging detection of the exogenous NO in mouse macrophage cells and endogenous NO in gardenia cells. The results demonstrated the efficacy and advantages of the new probe for NO detection in living cells.  相似文献   

4.
Hydrogen sulfide (H2S) is an important endogenous signaling molecule with a variety of biological functions. Development of fluorescent probes for highly selective and sensitive detection of H2S is necessary. We show here that dual‐reactable fluorescent H2S probes could react with higher selectivity than single‐reactable probes. One of the dual‐reactable probes gives more than 4000‐fold turn‐on response when reacting with H2S, the largest response among fluorescent H2S probes reported thus far. In addition, the probe could be used for high‐throughput enzymatic assays and for the detection of Cys‐induced H2S in cells and in zebrafish. These dual‐reactable probes hold potential for highly selective and sensitive detection of H2S in biological systems.  相似文献   

5.
This study reports an activatable iridium(III) complex probe for phosphorescence/time-gated luminescence detection of cysteine (Cys) in vitro and in vivo. The probe, [Ir(ppy)2(NTY-bpy)](PF6) [ppy: 2-phenylpyridine; NTY-bpy: 4-methyl-4′-(2-nitrovinyl)-2,2′-bipyridine], is developed by incorporating a strong electron-withdrawing group, nitroolefin, into a bipyridine ligand of the IrIII complex. The luminescence of the probe is quenched owing to the intramolecular charge transfer (ICT) process, but switched on by a specific recognition reaction between the probe and Cys. [Ir(ppy)2(NTY-bpy)](PF6) shows high sensitivity and selectivity for Cys detection and good biocompatibility. The long-lived emission of [Ir(ppy)2(NTY-bpy)](PF6) allows time-gated luminescence analysis of Cys in cells and human sera. These properties make it convenient for the phosphorescence and time-gated luminescence imaging and flow cytometry analysis of Cys in live samples. The Cys images in cancer cells and inflamed macrophage cells reveal that [Ir(ppy)2(NTY-bpy)](PF6) is distributed in mitochondria after cellular internalization. Visualizations and flow cytometry analysis of mitochondrial Cys levels and Cys-mediated redox activities of live cells are achieved. By using [Ir(ppy)2(NTY-bpy)](PF6) as a probe, in vivo sensing and imaging of Cys in D. magna, zebrafish, and mice are then demonstrated.  相似文献   

6.
Enzyme activity in live cells is dynamically regulated by small‐molecule transmitters for maintaining normal physiological functions. A few probes have been devised to measure intracellular enzyme activities by fluorescent imaging, but the study of the regulation of enzyme activity via gasotransmitters in situ remains a long‐standing challenge. Herein, we report a three‐channel imaging correlation by a single dual‐reactive fluorescent probe to measure the dependence of phosphatase activity on the H2S level in cells. The two sites of the probe reactive to H2S and phosphatase individually produce blue and green fluorescent responses, respectively, and resonance energy transfer can be triggered by their coexistence. Fluorescent analysis based on the three‐channel imaging correlation shows that cells have an ideal level of H2S to promote phosphatase activity up to its maximum. Significantly, a slight deviation from this H2S level leads to a sharp decrease of phosphatase activity. The discovery further strengthens our understanding of the importance of H2S in cellular signaling and in various human diseases.  相似文献   

7.
Hydrogen sulfide (H2S) is an endogenous gasotransmitter and plays intriguing biological roles. To study the biological role of H2S, efficient fluorescent probes are in great demand. For imaging of H2S in deep-tissue, a two-photon probe that emits in the red wavelength region is of choice to avoid the autofluorescence from intrinsic biomolecules. Here, we disclose such a probe, which, developed based on an acetyl benzocoumarin fluorophore, can be excited at 900?nm under two-photon excitation and emit in the red region. The probe shows high reactivity, selectivity, and sensitivity in in vitro assays. Two-photon microscopic imaging of H2S in HeLa cells aided by the probe demonstrates that it is potentially useful to study H2S level changes in cells and tissues influenced by external stimuli.  相似文献   

8.
A new dual luminescent sensitive paint for barometric pressure and temperature (T) is presented. The green‐emitting iridium(III) complex [Ir(ppy)2(carbac)] (ppy=2‐phenylpyridine; carbac=1‐(9H‐carbazol‐9‐yl)‐5,5‐dimethylhexane‐2,4‐dione) was applied as a novel probe for T along with the red‐emitting complex [Ir(btpy)3], (btpy=2‐(benzo[b]thiophene‐2‐yl)pyridine) which functions as a barometric (in fact oxygen‐sensitive) probe. Both iridium complexes were dissolved in different polymer materials to achieve optimal responses. The probe [Ir(ppy)2(carbac)] was dispersed in gas‐blocking poly(acrylonitrile) microparticles in order to suppress any quenching of its luminescence by oxygen. The barometric probe [Ir(btpy)3], in turn, was incorporated in a cellulose acetate butyrate film which exhibits good permeability for oxygen. The effects of temperature on the response of the oxygen probe can be corrected by simultaneous optical determination of T, as the poly(acrylonitrile) microparticles containing the temperature indicator are incorporated into the film. The phosphorescent signals of the probes for T and barometric pressure, respectively, can be separated by optical filters due to the ≈75 nm difference in their emission maxima. The dual sensor is applicable to luminescence lifetime imaging of T and barometric pressure. It is the first luminescent dual sensor material for barometric pressure/T based exclusively on the use of IrIII complexes in combination with luminescence lifetime imaging.  相似文献   

9.
Hydrogen peroxide (H2O2) mediates the biology of wound healing, apoptosis, inflammation, etc. H2O2 has been fluorometrically imaged with protein‐ or small‐molecule‐based probes. However, only protein‐based probes have afforded temporal insights within seconds. Small‐molecule‐based electrophilic probes for H2O2 require many minutes for a sufficient response in biological systems. Here, we report a fluorogenic probe that selectively undergoes a [2,3]‐sigmatropic rearrangement (seleno‐Mislow‐Evans rearrangement) with H2O2, followed by acetal hydrolysis, to produce a green fluorescent molecule in seconds. Unlike other electrophilic probes, the current probe acts as a nucleophile. The fast kinetics enabled real‐time imaging of H2O2 produced in endothelial cells in 8 seconds (much earlier than previously shown) and H2O2 in a zebrafish wound healing model. This work may provide a platform for endogenous H2O2 detection in real time with chemical probes.  相似文献   

10.
A new dinuclear RuII polypyridyl complex, [(bpy)2Ru(H2bpip)Ru(bpy)2]4+ ( RuH2bpip , bpy=2,2‐bipyridine, H2bpip=2,6‐pyridyl(imidazo[4,5‐f][1,10]phenanthroline), was developed to act as a one‐ and two‐photon luminescent probe for biological Cu2+ detection. This RuII complex shows a significant two‐photon absorption cross section (400 GM) and displays a remarkable one‐ and two‐photon luminescence switch in the presence of Cu2+ ions. Importantly, RuH2bpip can selectively recognise Cu2+ in aqueous media in the presence of other abundant cellular cations (such as Na+, K+, Mg2+, and Ca2+), trace metal ions in organisms (such as Zn2+, Ag+, Fe3+, Fe2+, Ni2+, Mn2+, and Co2+), prevalent toxic metal ions in the environment (such as Cd2+, Hg2+, and Cr3+), and amino acids, with high sensitivity (detection limit≤3.33×10?8 M ) and a rapid response time (≤15 s). The biological applications of RuH2bpip were also evaluated and it was found to exhibit low cytotoxicity, good water solubility, and membrane permeability; RuH2bpip was, therefore, employed as a sensing probe for the detection of Cu2+ in living cells and zebrafish.  相似文献   

11.
A new heterometallic coordination polymer, namely [Cd2Sr(bdc)3(H2O)2]n ( 1 ) (H2bdc = terephthalic acid), was synthesized via the solvothermal reaction of Cd(NO3)2, Sr(NO3)2, and H2bdc. The X‐ray structural analysis reveals that compound 1 is a 3D framework based on 1D rod‐shaped heterometallic metal‐carboxylate chains as building subunits. Viewing along the crystallographic c axis, there exist large 1D rhombic channels with effective dimensions of ca. 10.0 × 18.6 Å2. Moreover, compound 1 emits intense luminescence at room temperature. The investigations of luminescence indicated that compound 1 can be served as a luminescence probe for the detection of nitroaromatic explosives. Furthermore, the anticancer activity of 1 was evaluated against three human cancer cells MCF‐7, MDA‐MB‐231, and MDA‐MB‐435S via the MTT assay.  相似文献   

12.
Selective detection of H2S in the cellular systems using fluorescent CPs/MOFs is of great scientific interest due to their outstanding aqueous stability, biocompatibility and real-time detection ability. Fabrication of such materials using complete biologically essential elements and applying them as an efficient biosensor is still quite challenging. In this context, two newly synthesized CPs containing biologically essential metal ion (Zn) and nitro/azido functional groups into the framework to sense extracellular and intracellular H2S by reducing into respective amines are presented. The CP- 1 containing the azide group acted as an efficient fluorescent turn-on probe with the lowest detection limit (7.2 μM) and shortest response time (30 s) among the Zn-based probes reported till date. Moreover, CP- 1 exhibited green luminescence in live cells after imaging a very low concentration of H2S, whereas the nitro analogue CP- 2 could not detect the target analyte due to its framework disruption.  相似文献   

13.
A 3-indolylacrylate derivative, 3-IA, prepared by connecting an ethyl acrylate in 3-position of indole has been synthesised and characterised. Ethyl acrylate moiety acts as the Michael acceptor towards H2S, and the resultant addition product then participates in intramolecular cyclisation with the ester group at 2-position to form another new heterocyclic ring. Blue fluorescence of 3-IA turned into green in presence of H2S, leading to ratiometric behaviour of the fluorescent sensor with large stokes shift of 55 nm. Probe 3-IA has excellent selectivity towards H2S over other biothiols and other competing anions. Density function theory/time-dependent density function theory calculations were carried out to validate the reaction mechanism and the electronic properties of 3-IA. Importantly, the ratiometric probe 3-IA shows great promise in H2S detection by simple visual fluorescent inspection in filter paper-based protocol. The probe shows its excellent ability to detect H2S in different natural water samples. Furthermore, we have employed our probe to detect H2S for ratiometric imaging in live Vero cell.  相似文献   

14.
Hydrogen sulfide (H2S) as small molecular signal messenger plays key functions in numerous biological processes. The imaging detection of intracellular hydrogen sulfide is of great significance. In this work, a ratiometric fluorescent probe BH based on an asymmetric BODIPY dye for detection of H2S was designed and synthesized. After the interaction with hydrogen sulfide, probe display colorimetric and ratiometric fluorescence response, with its maximum emission fluorescence wavelength red-shifted from 542 nm to 594 nm, which is attributed to the sequential nucleophilic reaction of H2S leading to enhanced molecular conjugation after ring formation of the BODIPY skeleton. A special response mechanism has been fully investigated by NMR titration and MS, so that the probe has excellent detection selectivity. Furthermore, probe BH has low cytotoxicity and fluorescence imaging experiments indicate that it can be used to monitor hydrogen sulfide in living cells.  相似文献   

15.
The toxic gas H2S has recently emerged as one of the important signaling molecules in biological systems. Thus understanding the production, distribution, and mode of action of H2S in biological system is important, but the fleeting and reactive nature of H2S makes it a daunting task. Herein we report a biocompatible, nitro‐functionalized metal–organic framework as reaction‐based fluorescence turn‐on probe for fast and selective H2S detection. The selective turn‐on performance of MOF remains unaffected even in presence of competing biomolecules.  相似文献   

16.
A two-photon fluorescence turn-on H2S probe GCTPOC–H2S based on a two-photon platform with a large cross-section, GCTPOC, and a sensitive H2S recognition site, dinitrophenyl ether was constructed. The probe GCTPOC–H2S exhibits desirable properties such as high sensitivity, high selectivity, functioning well at physiological pH and low cytotoxicity. In particular, the probe shows a 120-fold enhancement in the presence of Na2S (500 μM), which is larger than the reported two-photon fluorescent H2S probes. The large fluorescence enhancement of the two-photon probe GCTPOC–H2S renders it attractive for imaging H2S in living tissues with deep tissue penetration. Significantly, we have demonstrated that the probe GCTPOC–H2S is suitable for fluorescence imaging of H2S in living tissues with deep penetration by using two-photon microscopy. The further application of the two-photon probe for the investigation of biological functions and pathological roles of H2S in living systems is under progress.  相似文献   

17.
The capability of donor‐substituted alkynes to link different metal ions in a side‐on carbon donor‐chelate coordination mode is extended from the donor centers S and P to the second period element N. The complex [Tp′W(CO)22‐C2(S)(NHBn)}] (Tp′=hydrido‐tris(3,5‐dimethylpyrazolyl)borate, Bn=benzyl) bearing a terminal sulfur atom and a secondary amine substituent is accessible by a metal‐template synthesis. Subsequent deprotonation allowed the formation of remarkably stable heterobimetallic complexes with the [(η5‐C5H5)Ru(PPh3)] and the [Ir(ppy)2] moiety. Electrochemical and spectroscopic investigations (cyclic voltammetry, IR, UV/Vis, luminescence, EPR), as well as DFT calculations, and X‐ray structure determinations of the W–Ru complex in two oxidation states reveal a strong metal–metal coupling but also a limited delocalization of excited states.  相似文献   

18.
Ferroptosis is closely associated with cancer, neurodegenerative diseases and ischemia-reperfusion injury and the detection of its pathological process is very important for early disease diagnosis. Fluorescence based sensing technologies have become excellent tools due to the real-time detection of cellular physiological or pathological processes. However, to date the detection of ferroptosis using reducing substances as markers has not been achieved since the reducing substances are not only present at extremely low concentrations during ferroptosis but also play a key role in the further development of ferroptosis. Significantly, sensors for reducing substances usually consume reducing substances, instigating a redox imbalance, which further aggravates the progression of ferroptosis. In this work, a H2S triggered and H2S releasing near-infrared fluorescent probe (HL-H2S) was developed for the high-fidelity in situ imaging of ferroptosis. In the imaging process, HL-H2S consumes H2S and releases carbonyl sulfide, which is then catalyzed by carbonic anhydrase to produce H2S. Importantly, this strategy does not intensify ferroptosis since it avoids disruption of the redox homeostasis. Furthermore, using erastin as an inducer for ferroptosis, the observed trends for Fe2+, MDA, and GSH, indicate that the introduction of the HL-H2S probe does not exacerbate ferroptosis. In contrast, ferroptosis progression was significantly promoted when the release of H2S from HL-H2S was inhibited using AZ. These results indicate that the H2S triggered and H2S releasing fluorescent probe did not interfere with the progression of ferroptosis, thus enabling high-fidelity in situ imaging of ferroptosis.

A H2S triggered and H2S releasing near-infrared fluorescent probe (HL-H2S) was developed. HL-H2S does not interfere with the progression of ferroptosis by consuming H2S, thus enabling high-fidelity in situ imaging of ferroptosis.  相似文献   

19.
Herein, we report the development of two fluorescent probes for the highly selective and sensitive detection of H2S. The probes take advantage of a CuII? cyclen complex, which acts as a reaction center for H2S and as a quencher of BODIPY (boron‐dipyrromethene)‐based fluorophores with emissions at 765 and 680 nm, respectively. These non‐fluorescent probes could only be turned on by the addition of H2S, and not by other potentially interfering biomolecules, including reactive oxygen species, cysteine, and glutathione. In a chemical system, both probes detected H2S with a detection limit of 80 nM . The probes were successfully used for the endogenous detection of H2S in HEK 293 cells, for measuring the H2S‐release activity of dietary organosulfides in MCF‐7 cells, and for the in vivo imaging of H2S in mice.  相似文献   

20.
Development of bioanalytical methods for selective and accurate detection of H2S in living samples is essential for understanding the pathological and physiological functions of this gasotransmitter in biological systems. Here we report a Golgi apparatus-targetable lanthanide complex-based luminescent probe, Golgi-ABTTA-Eu3+/Tb3+, that can be used for accurately determining H2S in aqueous solution and living cells via the ratiometric time-gated luminescence (RM-TGL) technique. This probe is composed of 2,2′:6′,2′′-terpyridine-Eu3+/Tb3+ mixed complexes as the luminophore, 4-azidobenzyl-ether as the responsive moiety, and sulfanilamide as the Golgi apparatus-targeting moiety. Upon reaction with H2S, accompanied by the cleavage of 4-azidobenzyl group from the probe molecule, the long-lived emission of Tb3+ complex at 540 nm is significantly enhanced, while that of Eu3+ complex at 610 nm is obviously reduced. It was noted that the I540/I610 ratio increased by 8.8 times after the probe was exposed to H2S, which enabled H2S to be detected with RM-TGL method. After being incubated with living cells, the probe molecules were selectively accumulated in the Golgi apparatus, which allowed H2S in the Golgi apparatus to be successfully imaged in RM-TGL mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号