首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Predictability is a key requirement to encompass late‐stage C?H functionalization in synthetic routes. However, prediction (and control) of reaction selectivity is usually challenging, especially for complex substrate structures and elusive transformations such as remote C(sp3)?H oxidation, as it requires distinguishing a specific C?H bond from many others with similar reactivity. Developed here is a strategy for predictable, remote C?H oxidation that entails substrate binding to a supramolecular Mn or Fe catalyst followed by elucidation of the conformation of the host‐guest adduct by NMR analysis. These analyses indicate which remote C?H bonds are suitably oriented for the oxidation before carrying out the reaction, enabling prediction of site selectivity. This strategy was applied to late‐stage C(sp3)?H oxidation of amino‐steroids at C15 (or C16) positions, with a selectivity tunable by modification of catalyst chirality and metal.  相似文献   

2.
Using nickel and photoredox catalysis, the direct functionalization of C(sp3)?H bonds of N‐aryl amines by acyl electrophiles is described. The method affords a diverse range of α‐amino ketones at room temperature and is amenable to late‐stage coupling of complex and biologically relevant groups. C(sp3)?H activation occurs by photoredox‐mediated oxidation to generate α‐amino radicals which are intercepted by nickel in catalytic C(sp3)?C coupling. The merger of these two modes of catalysis leverages nickel's unique properties in alkyl cross‐coupling while avoiding limitations commonly associated with transition‐metal‐mediated C(sp3)?H activation, including requirements for chelating directing groups and high reaction temperatures.  相似文献   

3.
Controlled oxidation of palladium nanoparticles provided high‐valent PdIV oxo‐clusters which efficiently promote directed C−H halogenation reactions. In addition, palladium nanoparticles can undergo changes in oxidation states to provide both high‐valent PdIV and low‐valent Pd0 species within one system, and thus a tandem reaction of C−H halogenation and cross‐coupling (C−N, C−C, and C−S bond formation) was successfully established.  相似文献   

4.
Density functional theory calculations were carried out to investigate the reaction mechanism of methanol oxidation mediated by [(bpg)FeIVO]+ ( A ). Two models (CH3CN‐bound ferryl model B and CH3OH‐bound ferryl model C ) were also studied in this work to probe ligand effect. Mechanistically, both direct and concerted hydrogen transfer (DHT and CHT) pathways were explored. It is found that the initial step of methanol oxidation by A is C? H bond activation via a DHT pathway. Addition of different equatorial ligands has considerable influence on the reaction mechanisms. Methanol oxidation mediated by B commences via O? H bond activation; in sharp contrast, the oxidation mediated by C stems from C? H bond activation. Frontier molecular orbital analysis showed that the initial C? H bond activation by all these model complexes follows a hydrogen atom transfer (HAT) mechanism, whereas O? H bond activation proceeds via an HAT or proton transfer. © 2016 Wiley Periodicals, Inc.  相似文献   

5.
Difference X‐ray photoelectron spectroscopy (D‐XPS) revealed the surface oxidation process of a diamond‐like carbon (DLC) film. Evaluation of surface functional groups on DLC solely by the C 1s spectrum is difficult because the spectrum is broad and has a secondary asymmetric lineshape. D‐XPS clarified the subtle but critical changes at the DLC surface caused by wet oxidation. The hydroxyl (C―OH) group was dominant at the oxidized surface. Further oxidized carbonyl (C?O) and carboxyl (including carboxylate) (COO) groups were also obtained; however, the oxidation of C?O to COO was suppressed to some extent because the reaction required C―C bond cleavage. Wet oxidation cleaved the aliphatic hydrogenated and non‐hydrogenated sp2 carbon bonds (C―H sp2 and C―C sp2) to create a pair of C―OH and hydrogenated sp3 carbon (C―H sp3) bonds. The reaction yield for C―H sp2 was superior at the surface, suggesting that the DLC film was hydrogen rich at the surface. Oxidation of aromatic sp2 rings or polycyclic aromatic hydrocarbons such as nanographite to phenols did not occur because of their resonance stabilization with electron delocalization. Non‐hydrogenated sp3 carbon (C―C sp3) bonds were not affected by oxidation, suggesting that these bonds are chemically inert. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Thermal decomposition of four tertiary N‐(2‐methylpropyl)‐N‐(1‐diethylphosphono‐2,2‐dimethylpropyl)‐N‐oxyl (SG1)‐based alkoxyamines (SG1‐C(Me)2‐C(O)‐OR, R = Me, tBu, Et, H) has been studied at different experimental conditions using 1H and 31P NMR spectroscopies. This experiment represents the initiating step of methyl methacrylate polymerization. It has been shown that H‐transfer reaction occurs during the decomposition of three alkoxyamines in highly degassed solution, whereas no products of H‐transfer are detected during decomposition of SG1‐MAMA alkoxyamine. The value of the rate constant of H‐transfer for alkoxyamines 1 (SG1‐C(Me)2‐C(O)‐OMe) and 2 ( SG1‐C(Me)2‐C(O)‐OtBu) has been estimated as 1.7 × 103 M?1s?1. The high influence of oxygen on decomposition mechanism is found. In particular, in poorly degassed solutions, nearly quantitative formation of oxidation product has been observed, whereas at residual pressure of 10?5 mbar, the main products originate from H‐atom transfer reaction. The acidity of the reaction medium affects the decomposition mechanism suppressing the H‐atom transfer. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

7.
Transition metal catalyzed C?H phosphorylation remains an unsolved challenge. Reported methods are generally limited in scope and require stoichiometric silver salts as oxidants. Reported here is an electrochemically driven RhIII‐catalyzed aryl C?H phosphorylation reaction that proceeds through H2 evolution, obviating the need for stoichiometric metal oxidants. The method is compatible with a variety of aryl C?H and P?H coupling partners and particularly useful for synthesizing triarylphosphine oxides from diarylphosphine oxides, which are often difficult coupling partners for transition metal catalyzed C?H phosphorylation reactions. Experimental results suggest that the mechanism responsible for the C?P bond formation involves an oxidation‐induced reductive elimination process.  相似文献   

8.
The reactions of Sc+ (3D, 1D) and Fe+ (6D, 4 F) with acetone have been investigated in both high‐ and low‐spin states using density functional theory. Our calculations have indicated that oxidation of Sc+ by acetone can take place by (1) metal‐mediated H migration, (2) direct methyl‐H shift and/or (3) C = O insertion. The most energetically favorable pathway is metal‐mediated H migration followed by intramolecular ScO+ rotation and dissociation. For the deethanization of acetone mediated by Fe+, the reaction occurs on either the quartet or sextet surfaces through five elementary steps, i.e. encounter complexation, C–C bond activation, methyl migration, C–C coupling and non‐reactive dissociation. The rate‐determining step along the quartet‐state potential‐energy surface (PES) is similar to that in the case of Ni+ (2 F, 3d9), namely the methyl‐migration step. For the sextet‐state PES, however, the energy barrier for methyl migration is lower than that for C–C bond activation, and the rate‐determining step is C–C coupling. In general, the low‐spin‐state pathways are lower in energy than the high‐spin‐state pathways; therefore, the reaction pathways for the oxidation of Sc+ and the Fe+‐mediated deethanization of acetone mostly involve the low‐spin states. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A radical cation salt‐initiated phosphorylation of N‐benzylanilines was realized through an aerobic oxidation of the sp3 C?H bond, providing a series of α‐aminophosphonates in high yields. An investigation of the reaction scope revealed that this mild catalyst system is superior in good functional group tolerance and high reaction efficiency. The mechanistic study implied that the cleavage of the sp3 C?H bond was involved in the rate‐determining step.  相似文献   

10.
Selective oxidation of alcohols to aldehydes/ketones has been achieved with the help of 3‐mercaptopropionic acid (MPA)‐capped CdSe quantum dot (MPA‐CdSe QD) and visible light. Visible‐light‐prompted electron‐transfer reaction initiates the oxidation. The thiyl radical generated from the thiolate anion adsorbed on a CdSe QD plays a key role by abstracting the hydrogen atom from the C−H bond of the alcohol (R1CH(OH)R2). The reaction shows high efficiency, good functional group tolerance, and high site‐selectivity in polyhydroxy compounds. The generality and selectivity reported here offer a new opportunity for further applications of QDs in organic transformations.  相似文献   

11.
A molecular approach to metal‐containing ceramics and their application as selective heterogeneous oxidation catalysts is presented. The aminopyridinato copper complex [Cu2(ApTMS)2] (ApTMSH=(4‐methylpyridin‐2‐yl)trimethylsilanylamine) reacts with poly(organosilazanes) via aminopyridine elimination, as shown for the commercially available ceramic precursor HTT 1800. The reaction was studied by 1H and 13C NMR spectroscopy. The liberation of the free, protonated ligand ApTMSH is indicative of the copper polycarbosilazane binding. Crosslinking of the copper‐modified poly(organosilazane) and subsequent pyrolysis lead to the copper‐containing ceramics. The copper is reduced to copper metal during the pyrolysis step up to 1000 °C, as observed by solid‐state 65Cu NMR spectroscopy, SEM images, and energy‐dispersive spectroscopy (EDS). Powder diffraction experiments verified the presence of crystalline copper. All Cu@SiCN ceramics show catalytic activity towards the oxidation of cycloalkanes using air as oxidant. The selectivity of the reaction increases with increasing copper content. The catalysts are recyclable. This study proves the feasibility of this molecular approach to metal‐containing SiCN precursor ceramics by using silylaminopyridinato complexes. Furthermore, the catalytic results confirm the applicability of this new class of metal‐containing ceramics as catalysts.  相似文献   

12.
It is generally accepted that Ce4+ is unable to directly oxidize unreactive alkyl C?H bonds without the assistance of adjacent polar groups. Herein, we demonstrate in our newly developed confined photochemical reaction system that this recognized issue may be challenged. As we found, when a thin layer of a CeCl3/HCl aqueous solution was applied to a polymeric substrate and the substrate subjected to UV irradiation, Ce3+ was first photooxidized to form Ce4+ in the presence of H+, and the in situ formed Ce4+ then performs an oxidation reaction on the C?H bonds of the polymer surface to form surface‐carbon radicals for radical graft polymerization reactions and functional‐group transformations, while reducing to Ce3+ and releasing H+ in the process. This photoinduced cerium recycling redox (PCRR) reaction behaved as a biomimetic system in an artificial recycling reaction, leading to a sustainable chemical modification strategy for directly transforming alkyl C?H bonds on polymer surfaces into small‐molecule groups and polymer brushes. This method is expected to provide a green and economical tool for industrial applications of polymer‐surface modification.  相似文献   

13.
High‐valent manganese(IV or V)–oxo porphyrins are considered as reactive intermediates in the oxidation of organic substrates by manganese porphyrin catalysts. We have generated MnV– and MnIV–oxo porphyrins in basic aqueous solution and investigated their reactivities in C? H bond activation of hydrocarbons. We now report that MnV– and MnIV–oxo porphyrins are capable of activating C? H bonds of alkylaromatics, with the reactivity order of MnV–oxo>MnIV–oxo; the reactivity of a MnV–oxo complex is 150 times greater than that of a MnIV–oxo complex in the oxidation of xanthene. The C? H bond activation of alkylaromatics by the MnV– and MnIV–oxo porphyrins is proposed to occur through a hydrogen‐atom abstraction, based on the observations of a good linear correlation between the reaction rates and the C? H bond dissociation energy (BDE) of substrates and high kinetic isotope effect (KIE) values in the oxidation of xanthene and dihydroanthracene (DHA). We have demonstrated that the disproportionation of MnIV–oxo porphyrins to MnV–oxo and MnIII porphyrins is not a feasible pathway in basic aqueous solution and that MnIV–oxo porphyrins are able to abstract hydrogen atoms from alkylaromatics. The C? H bond activation of alkylaromatics by MnV– and MnIV–oxo species proceeds through a one‐electron process, in which a MnIV–‐oxo porphyrin is formed as a product in the C? H bond activation by a MnV–oxo porphyrin, followed by a further reaction of the MnIV–oxo porphyrin with substrates that results in the formation of a MnIII porphyrin complex. This result is in contrast to the oxidation of sulfides by the MnV–oxo porphyrin, in which the oxidation of thioanisole by the MnV–oxo complex produces the starting MnIII porphyrin and thioanisole oxide. This result indicates that the oxidation of sulfides by the MnV–oxo species occurs by means of a two‐electron oxidation process. In contrast, a MnIV–oxo porphyrin complex is not capable of oxidizing sulfides due to a low oxidizing power in basic aqueous solution.  相似文献   

14.
A practical and efficient method for the direct trifluoromethylthiolation of unactivated C(sp3)? H bonds by AgSCF3/K2S2O8 under mild conditions is described. The reaction has a good functional‐group tolerance and good selectivity. Initial mechanistic investigations indicate that the reaction may involve a radical process in which K2S2O8 plays key roles in both the activation of the C(sp3)? H bond and the oxidation of AgSCF3.  相似文献   

15.
A practical and efficient method for the direct trifluoromethylthiolation of unactivated C(sp3) H bonds by AgSCF3/K2S2O8 under mild conditions is described. The reaction has a good functional‐group tolerance and good selectivity. Initial mechanistic investigations indicate that the reaction may involve a radical process in which K2S2O8 plays key roles in both the activation of the C(sp3) H bond and the oxidation of AgSCF3.  相似文献   

16.
The silver‐catalyzed oxidative C(sp3)−H/P−H cross‐coupling of 1,3‐dicarbonyl compounds with H‐phosphonates, followed by a chemo‐ and regioselective C(sp3)−C(CO) bond‐cleavage step, provided heavily functionalized β‐ketophosphonates. This novel method based on a readily available reaction system exhibits wide scope, high functional‐group tolerance, and exclusive selectivity.  相似文献   

17.
The potential of homogeneous oxidation catalysis employing bromine has remained largely unexplored. We herein show that the combination of a tetraalkylammonium bromide and meta‐chloroperbenzoic acid offers a unique catalyst system for the convenient and selective oxidation of saturated C(sp3)−H bonds upon photochemical initiation with day light. This approach enables remote, intramolecular, position‐selective C−H amination as demonstrated for 20 different examples. For the first time, an N‐halogenated intermediate was isolated as the active catalyst state in a catalytic Hofmann–Löffler reaction. In addition, an expeditious one‐pot synthesis of N‐sulfonyl oxaziridines from N‐sulfonamides was developed and exemplified for 15 transformations. These pioneering examples provide a change in paradigm for molecular catalysis with bromine.  相似文献   

18.
Catalytic benzene C?H activation toward selective phenol synthesis with O2 remains a stimulating challenge to be tackled. Phenol is currently produced industrially by the three‐steps cumene process in liquid phase, which is energy‐intensive and not environmentally friendly. Hence, there is a strong demand for an alternative gas‐phase single‐path reaction process. This account documents the pivotal confined single metal ion site platform with a sufficiently large coordination sphere in β zeolite pores, which promotes the unprecedented catalysis for the selective benzene hydroxylation with O2 under coexisting NH3 by the new inter‐ligand concerted mechanism. Among alkali and alkaline‐earth metal ions and transition and precious metal ions, single Cs+ and Rb+ sites with ion diameters >0.300 nm in the β pores exhibited good performances for the direct phenol synthesis in a gas‐phase single‐path reaction process. The single Cs+ and Rb+ sites that possess neither significant Lewis acidic?basic property nor redox property, cannot activate benzene, O2, and NH3, respectively, whereas when they coadsorbed together, the reaction of the inter‐coadsorbates on the single alkali‐metal ion site proceeds concertedly (the inter‐ligand concerted mechanism), bringing about the benzene C?H activation toward phenol synthesis. The NH3‐driven benzene C?H activation with O2 was compared to the switchover of the reaction pathways from the deep oxidation to selective oxidation of benzene by coexisting NH3 on Pt6 metallic cluster/β and Ni4O4 oxide cluster/β. The NH3‐driven selective oxidation mechanism observed with the Cs+/β and Rb+/β differs from the traditional redox catalysis (Mars‐van Krevelen) mechanism, simple Langmuir‐Hinshelwood mechanism, and acid?base catalysis mechanism involving clearly defined interaction modes. The present catalysis concept opens a new way for catalytic selective oxidation processes involving direct phenol synthesis.  相似文献   

19.
Oxido‐iron(IV) porphyrin π‐radical cation species are involved in a variety of heme‐containing enzymes and have characteristic oxidation states consisting of a high‐valent iron center and a π‐conjugated macrocyclic ligand. However, the short lifetime of the complex has hampered detailed reactivity studies. Reported herein is a remarkable increase in the lifetime (80 s at 10 °C) of FeIV(TMP+.)(O)(Cl) ( 2 ; TMP=5,10,15,20‐tetramesitylporphyrin dianion), produced by the oxidation of FeIII(TMP)(Cl) ( 1 ) by ozone in α,α,α‐trifluorotoluene (TFT). The lifetime is 720 times longer compared to that of the currently most stable species reported to date. The increase in the lifetime improves the reaction efficiency of 2 toward inert alkane substrates, and allowed observation of the reaction of 2 with a primary C?H bond (BDEC‐H=ca. 100 kcal mol?1) directly. Activation parameters for cyclohexane hydroxylation were also obtained.  相似文献   

20.
Herein we disclosed the use of a remote ‘imidazole’‐based precatalyst [(para‐cymene)RuII(L)Cl]+, C‐1 where L=2‐(4‐substituted‐phenyl)‐1H‐imidazo[4,5‐f][1,10] phenanthroline) for the selective oxidation of a variety of alkyl arenes/heteroarenes and alcohols to their corresponding aldehydes or ketones in presence of tert‐butyl hydroperoxide (TBHP). The remote ‘imidazole’ moiety present in the complex facilitates the activation of oxidant and subsequent generation of active species via the release of para‐cymene from C‐1 , which in‐turn was less effective without the ‘imidazole’ moiety. The mechanistic features of C‐1 promoted oxidation of alkyl arenes were also assessed from spectroscopic, kinetic, and few control experiments. The substrate scope for C‐1 promoted oxidation reaction was assessed based on the selective oxidation of 27‐different alkyl arenes/heteroarenes and 25 different alcohols to their corresponding aldehydes/ketones in moderate to good yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号