首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A nickel/NHC system for regioselective oxidative annulation by double C?H bond activation and concomitant alkyne insertion is described. The catalytic reaction requires a bidentate directing group, such as an 8‐aminoquinoline, embedded in the substrate. Various 5,6,7,8‐tetrasubstituted‐N‐(quinolin‐8‐yl)‐1‐naphthamides can be prepared as well as phenanthrene and benzo[h]quinoline amide derivatives. Diarylalkynes, dialkylalkynes, and arylalkylalkynes can be used in the system. A Ni0/NiII catalytic cycle is proposed as the main catalytic cycle. The alkyne plays a double role as a two‐component coupling partner and as a hydrogen acceptor.  相似文献   

2.
A catalytic enantioselective method for the synthesis of chiral 1H‐isoindoles bearing quaternary stereogenic centers is reported. Powered by readily accessible phosphordiamidite ligands, the presented palladium(0)‐catalyzed C?H functionalization uses trifluoroacetimidoyl chlorides as electrophilic components. It delivers previously inaccessible perfluoroalkylated 1H‐isoindoles in high yields and enantioselectivities. The subsequent diastereoselective addition of nucleophiles provides access to densely substituted and sterically hindered isoindolines.  相似文献   

3.
Palladium‐catalyzed regio‐ and diastereoselective C?H functionalization with bromoalkynes and electronically unbiased olefins is reported. The picolinamide directing group enables the formation of putative 5 and 6‐exo‐metallacycles as intermediates to afford monoalkynylated products in up to 91 % yield in a stereospecific fashion. The systematic study reveals that substrates with a wide range of substituents on the olefin and bromoalkyne coupling partners are tolerated. Chemoselective transformations were demonstrated for the obtained amides, olefins, and alkynes.  相似文献   

4.
A general catalyzed direct C?H functionalization of s‐tetrazines is reported. Under mild reaction conditions, N‐directed ortho‐C?H activation of tetrazines allows the introduction of various functional groups, thus forming carbon–heteroatom bonds: C?X (X=I, Br, Cl) and C?O. Based on this methodology, we developed electrophilic mono‐ and poly‐ortho‐fluorination of tetrazines. Microwave irradiation was optimized to afford fluorinated s‐aryltetrazines, with satisfactory selectivity, within only ten minutes. This work provides an efficient and practical entry for further accessing highly substituted tetrazine derivatives (iodo, bromo, chloro, fluoro, and acetate precursors). It gives access to ortho‐functionalized aryltetrazines which are difficult to obtain by classical Pinner‐like syntheses.  相似文献   

5.
Palladium‐catalyzed alkene‐directed cross‐coupling of aryl iodide with another aryl halide through C?H arylation opens a unique avenue for unsymmetrical biaryl‐derived molecules. However, homo‐coupling of aryl iodides often erodes the overall synthetic efficiency. Reported herein is a highly chemoselective Pd0‐catalyzed alkyne‐directed cross‐coupling of aryl iodides with bromophenols, which was subsequently followed by phenol dearomatization to furnish a very attractive [2+2+1] spiroannulation. Notably, possible homo‐coupling of aryl iodides was not observed at all. Mechanistic studies indicated that a five‐membered aryl/vinyl palladacycle most likely accounts for promoting the key step of biaryl cross‐coupling.  相似文献   

6.
Transition metal‐catalyzed isocyanide insertion has served as a fundamental and important chemical transformation. Classical isocyanide insertion usually occurs between organohalides and nucleophiles, which normally involves tedious and non‐atom‐economical prefunctionalization processes. However, oxidative C?H/N?H isocyanide insertion offers an efficient and green alternative. Herein, a nickel‐catayzed oxidative C?H/N?H isocyanide insertion of aminoquinoline benzamides has been developed. Different kinds of iminoisoindolinone derivatives could be synthesized in good yields by utilizing Ni(acac)2 as the catalyst. In this transformation, isocyanide serves as an efficient C1 connector, which further inserted into two simple nucleophiles (C?H/N?H), representing an effective way to construct heterocycles.  相似文献   

7.
Visible‐light‐induced ruthenium catalysis has enabled remote C?H alkylations with excellent levels of position control under exceedingly mild conditions at room temperature. The metallaphotocatalysis occurred under exogenous‐photosensitizer‐free conditions and features an ample substrate scope. The robust nature of the photo‐induced mild meta‐C?H functionalization is reflected by the broad functional group tolerance, and the reaction can be carried out in an operationally simple manner, setting the stage for challenging secondary and tertiary meta‐C?H alkylations by ruthenaphotoredox catalysis.  相似文献   

8.
A palladium(II)‐catalyzed thioketone‐chelation‐assisted direct C?H arylation of ferrocenes is described. With thioketone as an efficient directing group, various monoaryl‐ and diaryl‐substituted thiocarbonylferrocenes were obtained by palladium‐catalyzed direct C?H functionalization in high yields under mild and base‐free reaction conditions. Furthermore, the arylated thiocarbonylferrocene could undergo diverse transformations.  相似文献   

9.
10.
This account collects the developments and transformations which avoid the utilization of harsh reaction conditions in the field of palladium catalyzed, ortho‐directed C?H activation of aniline derivatives from the first attempts to up‐to‐date results, including the results of our research laboratory. The discussed functionalizations performed under mild conditions include acylation, olefination, arylation, alkylation, alkoxylation reactions. Beside the optimization studies and the synthetic applications mechanistic investigations are also presented.  相似文献   

11.
Triazole assistance set the stage for a unified strategy for the iron‐catalyzed C?H allylation of arenes, heteroarenes, and alkenes with ample scope. The versatile catalyst also proved competent for site‐selective methylation, benzylation, and alkylation with challenging primary and secondary halides. Triazole‐assisted C?H activation proceeded chemo‐, site‐, and diastereo‐selectively, and the modular TAM directing group was readily removed in a traceless fashion under exceedingly mild reaction conditions.  相似文献   

12.
Atropo‐enantioselective C?H functionalization reactions are largely limited to the dynamic kinetic resolution of biaryl substrates through the introduction of steric bulk proximal to the axis of chirality. Reported herein is a highly atropo‐enantioselective palladium(0)‐catalyzed methodology that forges the axis of chirality during the C?H functionalization process, enabling the synthesis of axially chiral dibenzazepinones. Computational investigations support experimentally determined racemization barriers, while also indicating C?H functionalization proceeds by an enantio‐determining CMD to yield configurationally stable eight‐membered palladacycles.  相似文献   

13.
The C?H alkylation of aniline derivatives with both primary and secondary alkyl halides was achieved with a versatile nickel catalyst of a vicinal diamine ligand. Step‐economic access to functionalized 2‐pyrimidyl anilines, key structural motifs in anticancer drugs, is thus provided. The C?H functionalization proceeded through facile C?H activation and SET‐type C?X bond cleavage with the assistance of a monodentate directing group, which could be removed in a traceless fashion.  相似文献   

14.
Cp*‐free cobalt‐catalyzed alkyne annulations by C?H/N?H functionalizations were accomplished with molecular O2 as the sole oxidant. The user‐friendly oxidase strategy proved viable with various internal and terminal alkynes through kinetically relevant C?H cobaltation, providing among others step‐economical access to the anticancer topoisomerase‐I inhibitor 21,22‐dimethoxyrosettacin. DFT calculations suggest that electronic effects control the regioselectivity of the alkyne insertion step.  相似文献   

15.
A cobalt‐catalyzed chelation‐assisted tandem C?H activation/C?C cleavage/C?H cyclization of aromatic amides with alkylidenecyclopropanes is reported. This process allows the sequential formation of two C?C bonds, which is in sharp contrast to previous reports on using rhodium catalysts for the formation of C?N bonds. Here the inexpensive catalyst system exhibits good functional‐group compatibility and relatively broad substrate scope. The desired products can be easily transformed into polycyclic lactones with m‐CPBA. Mechanistic studies revealed that the tandem reaction proceeds through a C?H cobaltation, β‐carbon elimination, and intramolecular C?H cobaltation sequence.  相似文献   

16.
Tritium‐labeled molecules are critical tools for elucidating the binding and metabolic properties of bioactive compounds, particularly during pharmaceutical discovery. Direct tritiation of inert C?H bonds with T2 gas is an ideal approach for tritium labeling, but significant gaps remain for direct tritiation of structurally complex molecules with diverse functional groups. Here we report the first application of palladium(II) C?H activation chemistry for tritiation with T2 gas. This practical transformation exhibits novel substrate scope and greater functional group tolerance compared to previous state of the art tritiation methods, and has been applied to directly tritiate 9 complex pharmaceuticals and an unprotected dipeptide. The isolated tritium‐labeled products exhibit >15 Ci mmol?1 specific activity, exceeding the typical requirements for application in studies of molecular interaction and metabolism.  相似文献   

17.
A new and efficient synthesis of 8H‐benzo[e]phenanthro[1,10‐bc]silines from 2‐((2‐(arylethynyl)aryl)silyl)aryl triflates under palladium catalysis has been developed. The reaction mechanism was experimentally investigated and a catalytic cycle involving C?H/C?H coupling through a new mode of 1,4‐palladium migration with concomitant alkene stereoisomerization is proposed.  相似文献   

18.
C?H activation bears great potential for enabling sustainable molecular syntheses in a step‐ and atom‐economical manner, with major advances having been realized with precious 4d and 5d transition metals. In contrast, we employed earth abundant, nontoxic iron catalysts for versatile allene annulations through a unique C?H/N?H/C?O/C?H functionalization sequence. The powerful iron catalysis occurred under external‐oxidant‐free conditions even at room temperature, while detailed mechanistic studies revealed an unprecedented 1,4‐iron migration regime for facile C?H activations.  相似文献   

19.
Previous enantioselective Pd0‐catalyzed C?H activation reactions proceeding via the concerted metalation‐deprotonation mechanism employed either a chiral ancillary ligand, a chiral base, or a bimolecular mixture thereof. This study describes the development of new chiral bifunctional ligands based on a binaphthyl scaffold which incorporates both a phosphine and a carboxylic acid moiety. The optimal ligand provided high yields and enantioselectivities for a desymmetrizing C(sp2)?H arylation leading to 5,6‐dihydrophenanthridines, whereas the corresponding monofunctional ligands showed low enantioselectivities. The bifunctional system proved applicable to a range of substituted dihydrophenanthridines, and allowed the parallel kinetic resolution of racemic substrates.  相似文献   

20.
A highly efficient palladium‐catalyzed disilylation reaction of aryl halides through C?H activation has been developed for the first time. The reaction has broad substrate scope. A variety of aryl halides can be disilylated by three types of C?H activation, including C(sp2)?H, C(sp3)?H, and remote C?H activation. In particular, the reactions are also unusually efficient. The yields are essentially quantitative in many cases, even in the presence of less than 1 mol % catalyst and 1 equivalent of the silylating reagent under relatively mild conditions. The disilylated biphenyls can be converted into disiloxane‐bridged biphenyls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号