首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In the present study, surface‐enhanced Raman spectra of a bifunctional Raman reporter, 2‐mercaptobenzimidazole, has been found to be responsive exclusively towards Cu2+ ions while the reporter remains anchored on the Au nanoparticle surface. Thus a specific Cu2+‐ion‐detection protocol emerges. The simplicity, sensitivity, and reproducibility of the method allow routine and quantitative detection of Cu2+ ions. An interference study involving a wide number of other metal ions shows the procedure to be uniquely selective and analytically rigorous. A theoretical study was carried out to corroborate the experimental results. Finally, the method is promising for real‐time assessment of Cu2+ ions in aqueous samples and also has the ability to discriminate CuI and CuII ions in solution.  相似文献   

4.
A general synthesis of 1‐aryl‐1‐H‐indazoles from o‐halogenated aryl aldehydes or ketones and aryl hydrazines was described. This protocol included an intermolecular condensation and a ligand‐free copper‐catalyzed intramolecular Ullmann‐type coupling reaction. This method was applied to a wide range of substrates to produce the indazole products in good yields.  相似文献   

5.
We examine calculated vibrational Raman optical activity (ROA) spectra of octahedral cobalt complexes containing different combinations of acetylacetonato and 3‐acetylcamphorato ligands. Starting from the Δ‐tris(acetylacetonato)cobalt(III) complex, the ROA spectra of isomers generated by successive replacement of acetylacetonato ligands by chiral (+)‐ or (?)‐3‐acetylcamphorato ligands are investigated. In this way, it is possible to assess the influence of the degree of ligand substitution, ligand chirality, and geometrical isomerism on the ROA spectra. In addition, the effect of the Λ‐configuration is studied. It is found that the ROA spectra contain features that make it possible to identify each of the isomers, demonstrating the great sensitivity of ROA spectroscopy to the chiral nature of the various complexes.  相似文献   

6.
王磊  李品华 《中国化学》2006,24(6):770-774
In the absence of any ligand, a recoverable palladium(O) on poly(vinylpyrrolidone) (PVP) catalyzed Suzuki reaction of aryl iodide and bromide with potassium aryltrifluoroborate was developed. The reaction conditions involved the use of water as the solvent, potassium carbonate as the base, and PVP supported palladium metal colloids as the catalyst. The palladium metal could be recovered and recycled for eight consecutive trials without significant loss of its activity.  相似文献   

7.
Reversible hydrogen storage under ambient conditions has been identified as a major bottleneck in enabling a future hydrogen economy. Herein, we report an amorphous vanadium(III) alkyl hydride gel that binds hydrogen through the Kubas interaction. The material possesses a gravimetric adsorption capacity of 5.42 wt % H2 at 120 bar and 298 K reversibly at saturation with no loss of capacity after ten cycles. This corresponds to a volumetric capacity of 75.4 kgH2 m?3. Raman experiments at 100 bar confirm that Kubas binding is involved in the adsorption mechanism. The material possesses an enthalpy of H2 adsorption of +0.52 kJ mol?1 H2, as measured directly by calorimetry, and this is practical for use in a vehicles without a complex heat management system.  相似文献   

8.
The cyclobutane cleavage reaction is an important process and has received continuous interest. Herein, we demonstrate the visible laser‐driven cleavage reaction of cyclobutane in crystal form by using in situ Raman spectroscopy. Silver(I) coordination‐induced strain and thermal effects from the laser irradiation are the two main driving forces for the cleavage of cyclobutane crystals. This work may open up a new avenue for studying cyclobutane cleavage reactions, as compared to the conventional routes using ex situ techniques.  相似文献   

9.
Four heteroleptic copper(I) complexes containing phenanthroline and monoanionic nido‐carborane‐diphosphine ligands have been prepared and structurally characterized by various spectroscopic techniques and X‐ray diffraction. These complexes exhibit intense absorptions in the visible range and excited‐state lifetimes on the microsecond scale. Their application in visible‐light‐induced cross‐dehydrogenative coupling reactions was investigated. Preliminary studies showed that one of the four copper(I) complexes is an efficient catalyst for photoinduced oxidative C?H functionalization using oxygen as oxidant. Furthermore, α‐functionalized tertiary amines were obtained in good‐to‐excellent yields by light irradiation (λ>420 nm) of a mixture of our CuI complex, tertiary amines, and a variety of nucleophiles (nitroalkane, acetone, or indoles) under aerobic conditions. Electron paramagnetic resonance measurements provided evidence for the formation of superoxide radical anions (O2??) rather than singlet oxygen (1O2) during these photocatalytic reactions.  相似文献   

10.
11.
Isolated Ga2 dimers were characterized in an argon matrix with the aid of resonance Raman and UV/Vis spectroscopy. The resonance Raman spectra gave evidence of not only the nu(Ga-Ga) fundamental, but also four overtones. Each of the signals exhibits 69Ga/71Ga isotopic splitting leading to the triplet pattern characteristic of two equivalent Ga atoms. On the basis of the experimental data, a harmonic frequency and anharmonicity constant have been determined for Ga2. An estimate of the dissociation energy on the assumption of a Morse-type potential energy curve results in a De value (upper limit) of about 145 kJ mol(-1). The force constant (64.8+/-0.3 N m(-1)) and dissociation energy of Ga2 are compared with those of other diatomics and those of molecules featuring Ga-Ga bonds.  相似文献   

12.
13.
Summary. The complexes [CTA][Mn(II)(SQ)3] were isolated in the solid state and purified. SQ is the o-semiquinone of L-dopa or dopamine and CTA is the cetyltrimethylammonium cation. These complexes were characterized by Raman, infrared, EPR and thermogravimetry (TG) techniques. The EPR spectra of the solids presented an intense signal characteristic of the o-semiquinone radical anion with g=2.0062 and g=2.0063 for L-dopa and dopamine, respectively. Six characteristic lines around the organic radical signal confirm the presence of the Mn2+ ion. The most intense Raman bands were observed at for dopamine and at 1356 cm–1 for L-dopa and assigned to a C–O stretching with major C1–C2 character. The absence of an intense Raman band at ca. , characterizes the ligands as an o-semiquinone radical anion. Broad bands in the region can be assigned to deformations associated with the five-member ring chelate including the manganese ion, the oxygens, and the C1–C2 bonds. The more intense IR bands for the dopamine and the L-dopa-derived ligands at are assigned to CO. Mass loss mechanisms for the two complexes, based on the TG results, were proposed and confirm the formula proposed.  相似文献   

14.
The complex cis‐[RuIII(dmbpy)2Cl2](PF6) ( 2 ) (dmbpy = 4, 4′‐dimethyl‐2, 2′‐bipyridine) was obtained from the reaction of cis‐[RuII(dmbpy)2Cl2] ( 1 ) with ammonium cerium(IV) nitrate followed by precipitation with saturated ammonium hexafluoridophosphate. The 1H NMR spectrum of the RuIII complex confirms the presence of paramagnetic metal atoms, whereas that of the RuII complex displays diamagnetism. The 31P NMR spectrum of the RuIII complex shows one signal for the phosphorus atom of the PF6 ion. The perspective view of each [RuII/III(dmbpy)2Cl2]0/+ unit manifests that the ruthenium atom is in hexacoordinate arrangement with two dmbpy ligands and two chlorido ligands in cis position. As the oxidation state of the central ruthenium metal atom becomes higher, the average Ru–Cl bond length decreases whereas the Ru–N (dmbpy) bond length increases. The cis‐positioned dichloro angle in RuIII is 1.3° wider than that in the RuII. The dihedral angles between pair of planar six‐membered pyridyl ring in the dmbpy ligand for the RuII are 4.7(5)° and 5.7(4)°. The observed inter‐planar angle between two dmbpy ligands in the RuII is 89.08(15)°, whereas the value for the RuIII is 85.46(20)°.  相似文献   

15.
16.
We describe a method to fabricate electrodes modified with high‐aspect ratio (HAR) palladium (Pd) nanorods derived from the electrochemical reduction of Pd salts in polycarbonate track‐etched membranes. The HAR Pd nanorod‐modified electrode platform enables direct spectroscopic observation of electrochemical processes particular to HAR forms of nano‐Pd using Raman spectroelectrochemistry. In the present study, we use this platform to observe an anomalous mechanism of oxidative electrochemical desorption of the probe molecule benzenethiol (BT) from the HAR Pd surface. At HAR Pd, the Pd?S bond between the Pd nanorods and BT severs upon oxidation of the Pd surface, whereas on the surface of spherical nano‐Pd, the C?S bond in BT is broken, as is more typically observed for sulfur‐containing organic molecules adsorbed to Pd surfaces. Using this probe reaction, we demonstrate the suitability of this HAR nanorod‐modified electrode platform for the investigation of anomalous electrochemical phenomena observed at HAR Pd for reactions that involve adsorbed intermediates in general – including not only adsorbed sulfur – but in principle also for the electrochemical oxidation of alternative fuels such as ethanol and methanol.  相似文献   

17.
In this paper we report on the interactions of the ionic liquid 1‐ethyl‐3‐methylimidazolium trifluoromethylsulfonate ([EMIm]TfO) with water and the solvation of zinc ions in neat [EMIm]TfO and [EMIm]TfO–water mixtures investigated by FTIR and Raman spectroscopy. The structures and physicochemical properties of the [EMIm]TfO–water mixtures are strongly dependent on the interaction between cations, anions, and water. The structure was changed from ionic‐liquid‐like to water‐like solutions upon addition of water. In addition, zinc salts can precipitate in 0.2 M Zn(TfO)2/[EMIm]TfO upon addition of 10 % (v/v) water, presumably as a result of polarity change of the solution. The average coordination number of TfO? per zinc ion calculated from Raman spectra is 3.8 in neat [EMIm]TfO, indicating that [Zn(TfO)4]2?, and [Zn(TfO)3]? complexes are present in the solution. However, in the presence of water, water interacts preferentially with the zinc ions, leading to aqueous zinc species. The solvation of zinc ions in 1‐butyl‐1‐methylpyrrolidinium trifluoromethylsulfonate ([Py1,4]TfO) was also investigated. In [Py1,4]TfO, there are, on average, 4.5 TfO? anions coordinating each zinc ion, corresponding to the weak interaction between [Py1,4]+ cations and TfO? anions. The species present in [Py1,4]TfO are likely a mixture of [Zn(TfO)4]2? and [Zn(TfO)5]3?.  相似文献   

18.
Reactions of the polymer {AuIC2Ph}n with polyphosphine ligands [1,4‐bis(2‐diphenylphosphino‐1H‐imidazol‐1‐yl)‐benzene (dpib), 1,3,5‐tris(4‐diphenylphosphinophenyl)benzene (tppb), 2,2′‐bis(diphenylphosphanyl)‐4,4′‐bipyridine (dpbp), and 3,6‐bis(diphenylphosphanyl)pyridazine (dppz)] afforded four gold(I) alkynyl‐polyphosphine complexes [{AuC2Ph}2(μ‐dpib)] ( 1 ), [{AuC2Ph}33‐tppb)] ( 2 ), [{AuC2Ph}2(μ‐dpbp)] ( 3 ), and [{AuC2Ph}2(μ‐dppz)] ( 4 ) in nearly quantitative yield. The compounds obtained were characterized using elemental analysis, ESI‐MS, X‐ray crystallography, and polynuclear NMR spectroscopy. Intermolecular aurophilic interaction together with π–π and σ–π stacking build up the supramolecular 3D network of complex 3 , whereas none of these intermolecular bondings were found in the crystal structures of compounds 1 , 2 , and 4 . Complexes 1 – 4 are luminescent both in solution (CH2Cl2) and in solid state under laser irradiation (λex = 308 nm). In solution, the diphosphine complexes 1 – 4 display dual emission corresponding to ligand centered transitions (λem = 360–375 nm) along with weaker contribution from MLCT excited states at ca. 490 nm. The long wavelength component of the emission plays a dominant role in the solid state luminescence spectra of complexes 1 , 3 , and 4 (460, 544, 520 nm, respectively) whereas the triphosphine complex 2 shows dual luminescence (372 and 520 nm) with considerable contribution from ligand centered excited state.  相似文献   

19.
20.
The complexes [Pt(tBu3tpy){C?C(C6H4C?C)n?1R}]+ (n=1: R=alkyl and aryl (Ar); n=1–3: R=phenyl (Ph) or Ph‐N(CH3)2‐4; n=1 and 2, R=Ph‐NH2‐4; tBu3tpy=4,4’,4’’‐tri‐tert‐butyl‐2,2’:6’,2’’‐terpyridine) and [Pt(Cl3tpy)(C?CR)]+ (R=tert‐butyl (tBu), Ph, 9,9’‐dibutylfluorene, 9,9’‐dibutyl‐7‐dimethyl‐amine‐fluorene; Cl3tpy=4,4’,4’’‐trichloro‐2,2’:6’,2’’‐terpyridine) were prepared. The effects of substituent(s) on the terpyridine (tpy) and acetylide ligands and chain length of arylacetylide ligands on the absorption and emission spectra were examined. Resonance Raman (RR) spectra of [Pt(tBu3tpy)(C?CR)]+ (R=n‐butyl, Ph, and C6H4‐OCH3‐4) obtained in acetonitrile at 298 K reveal that the structural distortion of the C?C bond in the electronic excited state obtained by 502.9 nm excitation is substantially larger than that obtained by 416 nm excitation. Density functional theory (DFT) and time‐dependent DFT (TDDFT) calculations on [Pt(H3tpy)(C?CR)]+ (R= n‐propyl (nPr), 2‐pyridyl (Py)), [Pt(H3tpy){C?C(C6H4C?C)n?1Ph}]+ (n=1–3), and [Pt(H3tpy){C?C(C6H4C?C)n?1C6H4‐N(CH3)2‐4}]+/+H+ (n=1–3; H3tpy=nonsubstituted terpyridine) at two different conformations were performed, namely, with the phenyl rings of the arylacetylide ligands coplanar (“cop”) with and perpendicular (“per”) to the H3tpy ligand. Combining the experimental data and calculated results, the two lowest energy absorption peak maxima, λ1 and λ2, of [Pt(Y3tpy)(C?CR)]+ (Y=tBu or Cl, R=aryl) are attributed to 1[π(C?CR)→π*(Y3tpy)] in the “cop” conformation and mixed 1[dπ(Pt)→π*(Y3tpy)]/1[π(C?CR)→π*(Y3tpy)] transitions in the “per” conformation. The lowest energy absorption peak λ1 for [Pt(tBu3tpy){C?C(C6H4C?C)n?1C6H4‐H‐4}]+ (n=1–3) shows a redshift with increasing chain length. However, for [Pt(tBu3tpy){C?C(C6H4C?C)n?1C6H4‐N(CH3)2‐4}]+ (n=1–3), λ1 shows a blueshift with increasing chain length n, but shows a redshift after the addition of acid. The emissions of [Pt(Y3tpy)(C?CR)]+ (Y=tBu or Cl) at 524–642 nm measured in dichloromethane at 298 K are assigned to the 3[π(C?CAr)→π*(Y3tpy)] excited states and mixed 3[dπ(Pt)→π*(Y3tpy)]/3[π(C?C)→π*(Y3tpy)] excited states for R=aryl and alkyl groups, respectively. [Pt(tBu3tpy){C?C(C6H4C?C)n?1C6H4‐N(CH3)2‐4}]+ (n=1 and 2) are nonemissive, and this is attributed to the small energy gap between the singlet ground state (S0) and the lowest triplet excited state (T1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号