首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Degradation of ethanol over SrCO3 nanowires and nanoparticles was used as a model reaction to investigate the effect of nanostructure on chemical property. Differences in catalytic degradation activity with nanostructure are evaluated. The results indicated that catalytic activity of SrCO3 particles increases with decreasing of particle size due to high surface area. But this conclusion cannot be applicable to evaluating SrCO3 nanowires and nanoparticles. SrCO3 nanowires have lower ignition temperatures and wider working temperature ranges than SrCO3 nanoparticles, though nanowires had lower surface areas. Besides, ethanol degraded over nanowires in three ways, and the dominating reaction changes with reaction temperature. Consequently, the main degradation products of nanowires differed with temperature. But for nanoparticles, acetaldehyde is the only main product. Since transmission electron microscopy, X-ray diffraction, and bond equilibrium theory analysis demonstrated that nanowires and nanoparticles had similar crystal structure, surface area, and grain size, the differences in catalytic degradation activity between SrCO3 nanowires and nanoparticles can be attributed to different distributions of active sites, as proven by CO2 and ethanol temperature programmed desorption.  相似文献   

2.
Platinum nanoparticles prepared in reverse micelles have been used as catalysts for the electron transfer reaction between hexacyanoferrate(III) and thiosulfate ions. Nanoparticles of average diameter ranging between 10 and 80 nm have been used as catalysts. The kinetic study of the catalytic reaction showed that for a fixed mass of catalyst the catalytic rate did not increase proportionately to the decrease in particle size over the whole range from 10 to 80 nm. The maximum reaction rate has been observed for average particle diameter of about 38 nm. Particles below diameter 38 nm exhibit a trend of decreasing reaction rate with the decrease in particle size, while those above diameter 38 nm show a steady decline of reaction rate with increasing size. It has been postulated that in the case of particles of average size less than 38 nm diameter, a downward shift of Fermi level with a consequent increase of band gap energy takes place. As a result, the particles require more energy to pump electrons to the adsorbed ions for the electron transfer reaction. This leads to a reduced reaction rate catalyzed by smaller particles. On the other hand, for nanoparticles above diameter 38 nm, the change of Fermi level is not appreciable. These particles exhibit less surface area for adsorption as the particle size is increased. As a result, the catalytic efficiency of the particles is also decreased with increased particle size. The activation energies for the reaction catalyzed by platinum nanoparticles of diameters 12 and 30 nm are about 18 and 4.8 kJ/mol, respectively, indicating that the catalytic efficiency of 12-nm-diameter platinum particles is less than that of particles of diameter 30 nm. Extremely slow reaction rate of uncatalyzed reaction has been manifested through a larger activation energy of about 40 kJ/mol for the reaction.  相似文献   

3.
Identification of active sites in gold-catalyzed hydrogenation of acrolein   总被引:1,自引:0,他引:1  
The active sites of supported gold catalysts, favoring the adsorption of C=O groups of acrolein and subsequent reaction to allyl alcohol, have been identified as edges of gold nanoparticles. After our recent finding that this reaction preferentially occurs on single crystalline particles rather than multiply twinned ones, this paper reports on a new approach to distinguish different features of the gold particle morphology. Elucidation of the active site issue cannot be simply done by varying the size of gold particles, since the effects of faceting and multiply twinned particles may interfere. Therefore, modification of the gold particle surface by indium has been used to vary the active site characteristics of a suitable catalyst, and a selective decoration of gold particle faces has been observed, leaving edges free. This is in contradiction to theoretical predictions, suggesting a preferred occupation of the low-coordinated edges of the gold particles. On the bimetallic catalyst, the desired allyl alcohol is the main product (selectivity 63%; temperature 593 K, total pressure p(total) = 2 MPa). From the experimentally proven correlation between surface structure and catalytic behavior, the edges of single crystalline gold particles have been identified as active sites for the preferred C=O hydrogenation.  相似文献   

4.
The small size of nanoparticles makes them attractive in catalysis due to their large surface-to-volume ratio. However, being small raises questions about their stability in the harsh chemical environment in which these nanoparticles find themselves during their catalytic function. In the present work, we studied the Suzuki reaction between phenylboronic acid and iodobenzene catalyzed by PVP-Pd nanoparticles to investigate the effect of catalysis, recycling, and the different individual chemicals on the stability and catalytic activity of the nanoparticles during this harsh reaction. The stability of the nanoparticles to the different perturbations is assessed using TEM, and the changes in the catalytic activity are assessed using HPLC analysis of the product yield. It was found that the process of refluxing the nanoparticles for 12 h during the Suzuki catalytic reaction increases the average size and the width of the distribution of the nanoparticles. This was attributed to Ostwald ripening in which the small nanoparticles dissolve to form larger nanoparticles. The kinetics of the change in the nanoparticle size during the 12 h period show that the nanoparticles increase in size during the beginning of the reaction and level off toward the end of the first cycle. When the nanoparticles are recycled for the second cycle, the average size decreases. This could be due to the larger nanoparticles aggregating and precipitating out of solution. This process could also explain the observed loss of the catalytic efficiency of the nanoparticles during the second cycle. It is also found that the addition of biphenyl to the reaction mixture results in it poisoning the active sites and giving rise to a low product yield. The addition of excess PVP stabilizer to the reaction mixture seems to lead to the stability of the nanoparticle surface and size, perhaps due to the inhibition of the Ostwald ripening process. This also decreases the catalytic efficiency of the nanoparticles due to capping of the nanoparticle surface. The addition of phenylboronic acid is found to lead to the stability of the size distribution as it binds to the particle surface through the O(-) of the OH group and acts as a stabilizer. Iodobenzene is found to have no effect and thus probably does not bind strongly to the surface during the catalytic process. These two results might have an implication on the catalytic mechanism of this reaction.  相似文献   

5.
The kinetics of reaction between silicon nanoparticles and molecular oxygen were studied by tandem differential mobility analysis. Aerosolized silicon nanoparticles were extracted from a low-pressure silane plasma into an atmospheric pressure aerosol flow tube reactor. Particles were initially passed through a differential mobility analyzer that was set to transmit only those particles having mobility diameters of approximately 10 nm. The monodisperse particle streams were mixed with oxygen/nitrogen mixtures of different oxygen volume fractions and allowed to react over a broad temperature range (600-1100 degrees C) for approximately one second. Particles were size-classified after reaction with a second differential mobility analyzer. The particle mobility diameters increased upon oxidation by up to 1.3 nm, depending on the oxygen volume fraction and the reaction temperature. Oxidation is described by a kinetic model that considers both oxygen diffusion and surface reaction, with diffusion becoming important after formation of a 0.5 nm thick oxide monolayer.  相似文献   

6.
We present a theoretical study of CO(ad) electrooxidation on Pt nanoparticles. Effects of size and surface texture of nanoparticles on the interplay of relevant kinetic processes are investigated. Thereby, strong impacts of particle size on electrocatalytic activities, observed in experiments, are rationalized. Our theoretical approach employs the active site concept to account for the heterogeneous surface of nanoparticles. It, moreover, incorporates finite rates of surface mobility of adsorbed CO. As demonstrated, the model generalizes established mean field or nucleation and growth models. We find very good agreement of our model with chronoamperometric current transients at various particle sizes and electrode potentials (Maillard, F.; Savinova, E. R.; Stimming, U. J. Electroanal. Chem., in press, doi:10.1016/j.jelechem.2006.02.024). The full interplay of on-site reactivity at active sites and low surface mobility of CO(ad) unfolds on the smallest nanoparticles ( approximately 2 nm). In this case, the solution of the model requires kinetic Monte Carlo simulations specifically developed for this problem. For larger nanoparticles (>4 nm) the surface mobility of CO(ad) is high compared to the reaction rate constants, and the kinetic equations can be solved in the limiting case of infinite surface mobility. The analysis provides an insight into the prevailing reaction mechanisms and allows for the estimation of relevant kinetic parameters.  相似文献   

7.
Enzymes have substrate‐tailored active sites with optimized molecular recognition and catalytic features. Although many different platforms have been used by chemists to construct enzyme mimics, it is challenging to tune the structure of their active sites systematically. By molecularly imprinting template molecules within doubly cross‐linked micelles, we created protein‐sized nanoparticles with catalytically functionalized binding sites. These enzyme mimics accelerated the hydrolysis of activated esters thousands of times over the background reaction, whereas the analogous catalytic group (a nucleophilic pyridyl derivative) was completely inactive in bulk solution under the same conditions. The template molecules directly controlled the size and shape of the active site and modulated the resulting catalyst's performance at different pHs. The synthetic catalysts displayed Michaelis–Menten enzymatic behavior and, interestingly, reversed the intrinsic reactivity of the activated esters during the hydrolysis.  相似文献   

8.
王肖鹏  薛永强 《化学通报》2011,74(4):368-371
以纳米氧化镍与硫酸氢钠水溶液为反应体系,研究了不同粒度反应物反应的动力学参数,并讨论了粒度对动力学参数的影响.结果表明,反应物粒度对该反应的速率常数、指前因子和表观活化能均有显著的影响;随着反应物粒径的减小,速率常数增大,指前因子和表观活化能减小,且指前因子的对数和表观活化能分别与反应物粒径的倒数呈线性关系.  相似文献   

9.
伍颖斯  余皓  王红娟  彭峰 《催化学报》2014,35(6):952-959
采用直接浸渍法、过氧化氢均相氧化沉积法和氨水催化水解法制备了石墨烯负载的铁、钴、镍金属氧化物纳米颗粒.研究了三种沉积方法对颗粒尺寸分布的影响;采用透射电子显微镜、傅里叶变换红外光谱、X射线衍射和X射线光电子能谱表征了催化剂的形貌与结构.用过氧化氢均相氧化沉淀法可制得粒径分布最均匀的纳米颗粒.过氧化氢的氧化作用可使石墨烯表面的氧化基团含量最大化,为纳米颗粒提供了足够的吸附与成核点.氨水加速了金属离子的水解与成核,导致纳米颗粒的粒径增大与不均.以苯甲醇氧化为探针反应考察了催化剂的性能.催化剂的活性按以下顺序逐渐下降:过氧化氢辅助沉积法>直接浸渍法>氨水催化水解法,与纳米颗粒尺寸增长趋势一致.纳米催化剂颗粒尺寸与其活性的良好关联性显示,发展石墨烯负载尺寸可控的纳米催化剂的方法具有重要意义.  相似文献   

10.
The terraces, edges, and facets of nanoparticles are all active sites for heterogeneous catalysis. These different active sites may cause the formation of various products during the catalytic reaction. Here we report that the step sites of Pd nanoparticles (NPs) can be covered precisely by the atomic layer deposition (ALD) method, whereas the terrace sites remain as active component for the hydrogenation of furfural. Increasing the thickness of the ALD‐generated overcoats restricts the adsorption of furfural onto the step sites of Pd NPs and increases the selectivity to furan. Furan selectivities and furfural conversions are linearly correlated for samples with or without an overcoating, though the slopes differ. The ALD technique can tune the selectivity of furfural hydrogenation over Pd NPs and has improved our understanding of the reaction mechanism. The above conclusions are further supported by density functional theory (DFT) calculations.  相似文献   

11.
Comprehensive studies combining surface science and real catalyst were performed to get further insight into catalytic active site and reaction mechanism for NO decomposition over supported palladium and cobalt oxide-based catalysts. On palladium single-crystal model catalysts, adsorption, dissociation and desorption behavior of NO was found to be closely related to the surface structures, the stepped surface palladium being active for dissociation of NO. In accordance with this result, the activity of powder Pd/Al2O3 catalysts for NO decomposition was directly related to the number of step sites exposed on the surface, suggesting that the step sites act as the catalytic active site for NO decomposition on Pd/Al2O3. NO decomposition over cobalt oxide was found to be significantly promoted by addition of alkali metals. Surface science study and catalyst characterization led to the same conclusion that the interface between the alkali metal and Co3O4 serves as the catalytic active site. From the results of in situ Fourier transform infrared (FT-IR) spectroscopy and isotopic transient kinetic analysis, a reaction mechanism was proposed in which the reaction is initiated by NO adsorption onto alkali metals to form NO2 species and then NO2 species react with the adsorbed NO species to form N2 over the interface between the alkali metal and Co3O4.  相似文献   

12.
Zhou  Peng  Zhang  Hongna  Ji  Hongwei  Ma  Wanhong  Chen  Chuncheng  Zhao  Jincai 《中国科学:化学(英文版)》2020,63(3):354-360
Identifying the active catalytic centers on catalyst surface is significant for exploring the catalytic reaction mechanism and further guiding the synthesis of high-performance catalysts.However,it remains a challange in developing the site-specific technology for the identification of the active catalytic centers.Herein,in-situ infrared spectroscopy of adsorbed CO,photocatalytic hydrogen evolution reaction(HER) test and theoretical simulation were used to distinguish and quantify the different surface sites and their H2-production catalytic activity on TiO_2-supported Pt nanoparticles(Pt NPs).Two different types of surface Pt sites,tip Pt(Pt_(tip)) and edge/terrace Pt_(edge/terrace),on TiO_2-supported Pt nanoparticles(Pt NPs) were identified.The photocatalytic H2-production activity of TiO_2-supported Pt NPs shows a linear functional relationship with the number of Pt_(tip) sites.However,the number of Pt_(edge/terracesites) produced little effect on the activity of TiO_2-supported Pt NPs.First-principle simulations confirmed that H2-evolution at the Pttipsites owns a lower energy barrier than that at Pt_(edge/terrace).This findings would be helpful for the fabrication of high-performance Pt catalysts.  相似文献   

13.
Fe-based catalytic sites for the reduction of oxygen in acidic medium have been identified by (57)Fe M?ssbauer spectroscopy of Fe/N/C catalysts containing 0.03 to 1.55 wt% Fe, which were prepared by impregnation of iron acetate on carbon black followed by heat-treatment in NH(3) at 950 °C. Four different Fe-species were detected at all iron concentrations: three doublets assigned to molecular FeN(4)-like sites with their ferrous ions in a low (D1), intermediate (D2) or high (D3) spin state, and two other doublets assigned to a single Fe-species (D4 and D5) consisting of surface oxidized nitride nanoparticles (Fe(x)N, with x≤ 2.1). A fifth Fe-species appears only in those catalysts with Fe-contents ≥0.27 wt%. It is characterized by a very broad singlet, which has been assigned to incomplete FeN(4)-like sites that quickly dissolve in contact with an acid. Among the five Fe-species identified in these catalysts, only D1 and D3 display catalytic activity for the oxygen reduction reaction (ORR) in the acid medium, with D3 featuring a composite structure with a protonated neighbour basic nitrogen and being by far the most active species, with an estimated turn over frequency for the ORR of 11.4 e(-) per site per s at 0.8 V vs. RHE. Moreover, all D1 sites and between 1/2 and 2/3 of the D3 sites are acid-resistant. A scheme for the mechanism of site formation upon heat-treatment is also proposed. This identification of the ORR-active sites in these catalysts is of crucial importance to design strategies to improve the catalytic activity and stability of these materials.  相似文献   

14.
The understanding of the atomic-scale structural and chemical ordering in supported nanosized alloy particles is fundamental for achieving active catalysts by design. This report shows how such knowledge can be obtained by a combination of techniques including X-ray photoelectron spectroscopy and synchrotron radiation based X-ray fine structure absorption spectroscopy and high-energy X-ray diffraction coupled to atomic pair distribution function analysis, and how the support-nanoalloy interaction influences the catalytic activity of ternary nanoalloy (platinum-nickel-cobalt) particles on three different supports: carbon, silica, and titania. The reaction of carbon monoxide with oxygen is employed as a probe to the catalytic activity. The thermochemical processing of this ternary composition, in combination with the different support materials, is demonstrated to be capable of fine-tuning the catalytic activity and stability. The support-nanoalloy interaction is shown to influence structural and chemical ordering in the nanoparticles, leading to support-tunable active sites on the nanoalloys for oxygen activation in the catalytic oxidation of carbon monoxide. A nickel/cobalt-tuned catalytic site on the surface of nanoalloy is revealed for oxygen activation, which differs from the traditional oxygen-activation sites known for oxide-supported noble metal catalysts. The discovery of such support-nanoalloy interaction-enabled oxygen-activation sites introduces a very promising strategy for designing active catalysts in heterogeneous catalysis.  相似文献   

15.
This study was aimed at addressing the present challenge of cascade reactions, namely, how to furnish the catalysts with desired and hierarchical catalytic ability. This issue was addressed by constructing a cascade‐reaction nanoreactor made of a bifunctional molecularly imprinted polymer containing acidic catalytic sites and Pt nanoparticles. The acidic catalytic sites within the imprinted polymer allowed one specified reaction, whereas the encapsulated Pt nanoparticles were responsible for another coupled reaction. To that end, the unique imprinted polymer was fabricated by using two well‐coupled templates, that is, 4‐nitrophenyl acetate and 4‐nitrophenol. The catalytic hydrolysis of the former compound at the acidic catalytic sites led to the formation of the latter compound, which was further reduced by the encapsulated Pt nanoparticles to 4‐aminophenol. Therefore, this nanoreactor demonstrated a catalytic‐cascade ability. This protocol opens up the opportunity to develop functional catalysts for complicated chemical processes.  相似文献   

16.
采用聚乙烯吡咯烷酮(PVP)保护的化学共还原法制备了Pd/Co双金属纳米颗粒, 研究了PVP及还原剂(NaBH4)的用量、金属盐浓度、金属比例等对Pd/Co双金属纳米颗粒催化NaBH4制氢性能的影响. 透射电子显微镜(TEM)的结果表明, 所制备的Pd/Co双金属纳米颗粒的平均粒径在1.5-2.8 nm之间. Pd/Co双金属纳米颗粒(BNPs)的催化活性远高于Pd与Co单金属纳米颗粒的活性; 当Pd/Co的理论原子比为1/9时, 双金属纳米颗粒的催化活性最高可达15570 mol·mol-1·h-1 (文中纳米颗粒的催化活性均为每摩尔Pd的活性). 密度泛函理论(DFT)的计算结果表明, Pd原子与Co原子之间发生电荷转移, 使得Pd原子带负电而Co原子带正电, 荷电的Pd和Co原子进而成为催化反应的活性中心. 所制备的Pd/Co双金属纳米颗粒具有很好的催化耐久性, 即使重复使用5次后, 该催化剂仍具有较高的催化活性, 且使用后的纳米颗粒催化剂也没有出现团聚现象. 双金属纳米颗粒催化NaBH4水解反应的活化能约为54 kJ·mol-1.  相似文献   

17.
Nitric oxide(NO_x), as one of the main pollutants, can contribute to a series of environmental problems, and to date the selective catalytic reduction(SCR) of NO_x with NH_3 in the presence of excess of O_2 over the catalysts has served as one of the most effective methods, in which Mn-based catalysts have been widely studied owing to their excellent low-temperature activity toward NH3-SCR. However, the related structure-activity relation was not satisfactorily explored at the atomic level. By virtue of DFT+U calculations together with microkinetic analysis, we systemically investigate the selective catalytic reduction process of NO with NH_3 over Mn_3 O_4(110), and identify the crucial thermodynamic and kinetic factors that limit the catalytic activity and selectivity.It is found that NH3 prefers to adsorb on the Lewis acid site and then dehydrogenates into NH_2~* assisted by either the two-or three-fold lattice oxygen; NH_2~* would then react with the gaseous NO to form an important intermediate NH_2 NO that prefers to convert into N_2 O rather than N_2 after the sequential dehydrogenation, while the residual H atoms interact with O_2 and left the surface in the form of H_2 O. The rate-determining step is proposed to be the coupling reaction between NH_2~* and gaseous NO.Regarding the complex surface structure of Mn_3 O_4(110),the main active sites are quantitatively revealed to be O_(3 c) and Mn_(4 c).  相似文献   

18.
铂铼、铂锡、铂铱等双金属催化剂已有报道,但有关以稀土金属为第2或第3组分的重整催化剂的报道尚很少见,本文报道用中毒法对PtY/Al_2O_3的金属活性中心性质的研究,试图探讨其活性中心与催化性质的某些联系。 1 实验部分 按文献[1]制备催化剂,其中Pt、Y、Cl含量分别为0.3、0.1、1.0 wt%,使用前不焙烧,比  相似文献   

19.
煤焦催化气化活性位扩展模型的研究   总被引:3,自引:2,他引:1  
针对煤催化气化反应中传统的煤气化动力学模型不再适用或应用范围受到限制的现实,从催化作用机理分析入手,以煤焦CO2催化气化为研究对象,建立了描述气化反应速率与转化率关系的动力学模型——活性位扩展模型。并以KCl催化剂及K-Ni(10%Ni)复合催化剂作用下神府煤焦CO2气化的实验结果对模型进行验证。结果表明,活性位扩展模型很好地体现了煤焦催化气化的动力学规律,即催化剂的添加,有效地增大了反应界面处的活性部位和活性表面积,使气化反应在更温和的条件下快速进行;模拟值与实验值吻合较好,最大偏差10%。由于反应初期的传质阻力不可忽略,实验值与模拟值存在一定误差。  相似文献   

20.
Experimental and kinetic modelling studies are presented to investigate the mechanism of 3,3′,5,5′-tetramethylbenzidine (TMB) oxidation by hydrogen peroxide (H2O2) catalyzed by peroxidase-like Pt nanoparticles immobilized in spherical polyelectrolyte brushes (SPB−Pt). Due to the high stability of SPB−Pt colloidal, this reaction can be monitored precisely in situ by UV/VIS spectroscopy. The time-dependent concentration of the blue-colored oxidation product of TMB expressed by different kinetic models was used to simulate the experimental data by a genetic fitting algorithm. After falsifying the models with abundant experimental data, it is found that both H2O2 and TMB adsorb on the surface of Pt nanoparticles to react, indicating that the reaction follows the Langmuir–Hinshelwood mechanism. A true rate constant k, characterizing the rate-determining step of the reaction and which is independent on the amount of catalysts used, is obtained for the first time. Furthermore, it is found that the product adsorbes strongly on the surface of nanoparticles, thus inhibiting the reaction. The entire analysis provides a new perspective to study the catalytic mechanism and evaluate the catalytic activity of the peroxidase-like nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号