首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chiral assembly and asymmetric synthesis are critically important for the generation of chiral metal clusters with chiroptical activities. Here, a racemic mixture of [K(CH3OH)2(18‐crown‐6)]+[Cu5(StBu)6]? ( 1?CH3OH ) in the chiral space group was prepared, in which the chiral red‐emissive anionic [Cu5(StBu)6]? cluster was arranged along a twofold screw axis. Interestingly, the release of the coordinated CH3OH of the cationic units turned the chiral 1?CH3OH crystal into a mesomeric crystal [K(18‐crown‐6)]+[Cu5(StBu)6]? ( 1 ), which has a centrosymmetric space group, by adding symmetry elements of glide and mirror planes through both disordered [Cu5(StBu)6]? units. The switchable chiral/achiral rearrangement of [Cu5(StBu)6]? clusters along with the capture/release of CH3OH were concomitant with an intense increase/decrease in luminescence. We also used cationic chiral amino alcohols to induce the chiral assembly of a pair of enantiomers, [d /l ‐valinol(18‐crown‐6)]+[Cu5(StBu)6]? ( d /l ‐Cu5V ), which display impressive circularly polarized luminescence (CPL) in contrast to the CPL‐silent racemic mixture of 1?CH3OH and mesomeric 1 .  相似文献   

2.
The chiral bidentate ligand (S,S)-1 reacts stereospecifically with Ga3+ to generate a [Ga4(L)6]12− molecular tetrahedron although similar ligands generate [Ga2(L)3]6− complexes. The assembly of this complex is self-selective as a racemic mixture of the ligand sorts by chirality to generate an enantiomeric pair of homochiral complexes.  相似文献   

3.
The [AuxAg16-x(SAdm)8(Dppe)2] nanocluster with aggregation-induced emission (AIE) was synthesized from a non-fluorescent [Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3 nanocluster via a ligand-exchange engineering (Dppe=1,2-Bis(diphenylphosphino)ethane, Dppm=Bis(diphenylphosphino)methane, HSAdm=1-Adamantanethiol). The nanocluster has a Au-doped icosahedral AuxAg13-x core, capped by two Ag(SR)3, one Ag(SR)2 and two Dppe ligands. By changing the achiral Dppe ligand into a chiral dbpb ligand ((2S,3S)-(-)-Bis(diphenylphosphino)butane or (2R,3R)-(+)-2,3-Bis(diphenylphosphino)butane), chiral nanoclusters are obtained. ESI-MS and UV-vis spectroscopy were performed to track the reaction. This work provides guidance for the construction of new clusters by etching clusters with multidentate phosphine ligands.  相似文献   

4.
2,3‐bis(diphenylphosphino)butane enantiomers (chiraphos, L) used as chiral auxiliaries results in the preferential formation of an unprecedented Au24 framework with inherent chirality. The crystal structure of [Au24L6Cl4]2+ ( 1 ) has a square antiprism‐like octagold core twinned by two helicene‐like hexagold motifs, where the inherent chirality is associated with the helical arrangement. The clusters carrying (R,R)‐ and (S,S)‐ diphosphines had right‐ and left‐handed strands, respectively. Circular dichroism spectra showed peaks in the visible to near‐IR region, some of which did not coincide with absorption bands, suggesting the enantiomeric Au24 frameworks possess unique chiroptical properties. The Au24 frameworks were thermally robust, which could be attributed to the superatomic concept (18 e? system) and the steric constraint effects of the bridging ligand units.  相似文献   

5.
This paper reviews various coordination/ organometallic polymers in which the metal atoms are incorporated in the backbone using diphosphine and diisocyanide ligands. Such ligands includes diphosphines of the type bis(diphenylphosphino)alkane where alkane is (CH2)m with m = 1, 3-6, bis(diphenylphosphino)acetylene (dpa), and bis(dimethylphosphino)methane (dmpm), and diisocyanides such as 1,8-diiso-cyano-p-menthane (dmb) and p-diisocyanotetra-methylbenzene (ditmb). The metal fragments are monocations such as Cu+, Ag+, and Au+, dinuclear species such as Pd2(dmb)22+, Pd2(dppm)22+, M2(dmpm)32+ (M = Cu, Ag), and clusters such as M4(dmb)42+ (M = Pd, Pt).  相似文献   

6.
Yang Xue  Liang Zhao 《中国化学》2019,37(7):667-671
We synthesized and structurally characterized a novel pentanuclear gold(I) cluster by a Ag(I)‐mediated organometallic transformation. The racemic mixture of this pentanuclear gold cluster has been successfully transformed into an enantio‐rich hexanuclear cluster compound by adding adscititious chiral species [Au2(S‐BINAP)2]2+ (S‐BINAP = (S)‐2,2’‐bis(diphenylphosphino)‐1,1’‐binaphthyl). In this process, a [AuPPh3]+ species in the pentanuclear cluster is replaced by [Au2(S‐BINAP)2]2+. This strategy represents a new method for the designed construction of chiral metal clusters.  相似文献   

7.
A series of novel PtII-linked double helices were prepared by inter- or intrastrand ligand-exchange reactions of the complementary duplexes composed of chiral or achiral amidine dimer and achiral carboxylic acid dimer strands joined by trans-PtII–acetylide complexes with PPh3 ligands using chiral and achiral chelating diphosphines. The structure and stability of the PtII-linked double helices were highly dependent on the diphosphine structures. An interstrand ligand exchange took place with chiral and achiral 1,3-diphosphine-based ligands, resulting in trans-PtII-bridged double helices, whose helical structures were quite stable even in dimethyl sulfoxide (DMSO) due to the interstrand cross-link, whereas a 1,2-diphosphine-based ligand produced non-cross-linked cis-PtII-linked duplexes, resulting from an intrastrand ligand-exchange that readily dissociated into single strands in DMSO. When enantiopure 1,3-diphosphine-based ligands were used, the resulting trans-PtII-bridged double helices adopted a preferred-handed helical sense biased by the chirality of the bridged diphosphines. Interestingly, the interstrand ligand exchange with racemic 1,3-diphosphine toward an optically-active PtII-linked duplex, composed of chiral amidine and achiral carboxylic acid strands, was found to proceed in a diastereoselective manner, thus forming complete homochiral trans-PtII-bridged double helices via a unique chiral self-sorting.  相似文献   

8.
The different coordination behavior of the flexible yet sterically demanding, hemilabile P,N ligand bis(quinoline-2-ylmethyl)phenylphosphine ( bqmpp ) towards selected CuI, AgI and AuI species is described. The resulting X-ray crystal structures reveal interesting coordination geometries. With [Cu(MeCN)4]BF4, compound 1 [Cu2(bqmpp)2](BF4)2 is obtained, wherein the copper(I) atoms display a distorted square planar and square pyramidal geometry. The steric demand and π-stacking of the ligand allow for a short Cu⋅⋅⋅Cu distance (2.588(9) Å). CuI complex 2 [Cu4Cl3(bqmpp)2]BF4 contains a rarely observed Cu4Cl3 cluster, probably enabled by dichloromethane as the chloride source. In the cluster, even shorter Cu⋅⋅⋅Cu distances (2.447(1) Å) are present. The reaction of Ag[SbF6] with the ligand leads to a dinuclear compound ( 3 ) in solution as confirmed by 31P{1H} NMR spectroscopy. During crystallization, instead of the expected phosphine complex 3 , a tris(quinoline-2-ylmethyl)bisphenyl-phosphine ( tqmbp ) compound [Ag2(tqmbp)2](SbF6)2 4 is formed by elimination of quinaldine. The Au(I) compound [Au2(bqmpp)2]PF6 ( 5 ) is prepared as expected and shows a linear arrangement of two phosphine ligands around AuI.  相似文献   

9.
The chirality of a gold nanocluster can be generated from either an intrinsically chiral inorganic core or an achiral inorganic core in a chiral environment. The first structural determination of a gold nanocluster containing an intrinsic chiral inorganic core is reported. The chiral gold nanocluster [Au20(PP3)4]Cl4 (PP3=tris(2‐(diphenylphosphino)ethyl)phosphine) has been prepared by the reduction of a gold(I)–tetraphosphine precursor in dichloromethane solution. Single‐crystal structural determination reveals that the cluster molecular structure has C3 symmetry. It consists of a Au20 core consolidated by four peripheral tetraphosphines. The Au20 core can be viewed as the combination of an icosahedral Au13 and a helical Y‐shaped Au7 motif. The identity of this Au20 cluster is confirmed by ESI‐MS. The chelation of multidentate phosphines enhances the stability of this Au20 cluster.  相似文献   

10.
Solvent-mediated crystal-to-crystal transformations of [Au6Ag3Cu3(H2O)3(d -pen)6(tdme)2]3+ (d -[ 1 (H2O)3]3+; pen2−= penicillaminate, tdme=1,1,1-tris(diphenylphosphinomethyl)ethane) to form unique supramolecular species are reported. Soaking crystals of d -[ 1 (H2O)3]3+ in aqueous Na2bdc (bdc2−=1,4-benzenedicarboxylate) yielded crystals containing d -[ 1 (bdc)(H2O)2]+ due to the replacement of a terminal aqua ligand in d -[ 1 (H2O)3]3+ by a monodentate bdc2− ligand. When γ-cyclodextrin (γ-CD) was added to aqueous Na2bdc, d -[ 1 (H2O)3]3+ was transformed to d -[ 1 (bdc@γ-CD)(H2O)2]+, where a γ-CD ring was threaded by a bdc2− molecule to construct a pseudorotaxane structure. While the use of dicarboxylates with an aliphatic carbon chain instead of bdc2− afforded analogous pseudorotaxanes, such pseudorotaxane species were not formed when crystals of [Au6Ag3Cu3(H2O)3(l -pen)6(tdme)2]3+ (l -[ 1 (H2O)3]3+) enantiomeric to d -[ 1 (H2O)3]3+ were soaked in aqueous Na2bdc and γ-CD, affording only crystals containing l -[ 1 (bdc)(H2O)2]+.  相似文献   

11.
A polyhydrido copper nanocluster, [Cu20H11{Se2P(OiPr)2}9] ( 2H ), which exhibits an intrinsically chiral inorganic core of C3 symmetry, was synthesized from achiral [Cu20H11{S2P(OiPr)2}9] ( 1H ) of C3h symmetry by a ligand‐exchange method. The structure has a distorted cuboctahedral Cu13 core, two triangular faces of which are capped along the C3 axis, one by a Cu6 cupola and the other by a single Cu atom. The Cu20 framework is further stabilized by 9 diselenophosphate and 11 hydride ligands. The number of hydride, phosphorus, and selenium resonances and their splitting patterns in multinuclear NMR spectra of 2H indicate that the chiral Cu20H11 core retains its C3 symmetry in solution. The 11 hydride ligands were located by neutron diffraction experiments and shown to be capping μ3‐H and interstitial μ5‐H ligands (in square‐pyramidal and trigonal‐bipyramidal cavities), as supported by DFT calculations on [Cu20H11(Se2PH2)9] ( 2H′ ) as a simplified model.  相似文献   

12.
《化学:亚洲杂志》2018,13(15):1906-1910
A unique example of a ring‐to‐cage structural conversion in a multinuclear gold(I) coordination system with d ‐penicillamine (d ‐H2pen) is reported. The reaction of [Au2Cl2(dppe)] (dppe=1,2‐bis(diphenylphosphino)ethane) with d ‐H2pen in a 1:1 ratio gave [Au4(dppe)2(d ‐pen)2] ([ 1 ]), in which two [Au2(dppe)]2+ units are linked by two d ‐pen S atoms in a cyclic form so as to have two bidentate‐N,O coordination arms. The subsequent reaction of [ 1 ] with Cu(OTf)2 afforded [Au4Cu(dppe)2(d ‐pen)2]2+ ([ 2 ]2+), in which a CuII ion is chelated by the two coordination arms in [ 1 ] to form an AuI4CuII bicyclic metallocage. A similar reaction using Cu(NO3)2 was accompanied by the ring expansion of [ 1 ] to [Au8(dppe)4(d ‐pen)4], leading to the production of [Au8Cu2(dppe)4(d ‐pen)4]4+ ([ 3 ]4+). In [ 3 ]4+, two CuII ions are each chelated by the two coordination arms to form an AuI8CuII2 tricyclic metallocage, accommodating a nitrate ion. The use of Ni(NO3)2 or Ni(OAc)2 instead of Cu(NO3)2 commonly gave a tricyclic metallocage of [Au8Ni2(dppe)4(d ‐pen)4]4+ ([ 4 ]4+), but a water molecule was accommodated inside the AuI8NiII2 metallocage.  相似文献   

13.
Constructing atomically precise helical superstructures of high order is an extensively pursued subject for unique aesthetic features and underlying applications. However, the construction of cluster-based helixes of well-defined architectures comes with a huge challenge owing to their intrinsic complexity in geometric structures and synthetic processes. Herein, we report a pair of unique P- and M-single stranded helical superstructures spontaneously assembled from R- and S-Au8c individual nanoclusters, respectively, upon selecting chiral BINAP (2,2′-bis(diphenylphosphino)-1,1′-binaphthalene) and hydrophilic o-H2MBA (o-mercaptobenzoic acid) as protective ligands to induce chirality and facilitate the formation of helixes. Structural analysis reveals that the chirality of the Au8c individual nanoclusters is derived from the homochiral ligands and the inherently chiral Au8 metallic kernel, which was further corroborated by experimental and computational investigations. More importantly, driven by the O–H⋯O interactions between (HCO3)2 dimers and achiral o-HMBA ligands, R/S-Au8c individual nanoclusters can assemble into helical superstructures in a highly ordered crystal packing. Electrospray ionization (ESI) and collision-induced dissociation (CID) mass spectrometry of Au8c confirm the hydrogen-bonded dimer of Au8c individual nanoclusters in solution, illustrating that the insertion of (HCO3)2 dimers plays a crucial role in the assembly of helical superstructures in the crystalline state. This work not only demonstrates an effective strategy to construct cluster-based helical superstructures at the atomic level, but also provides visual and reliable experimental evidence for understanding the formation mechanism of helical superstructures.

A pair of unprecedented helical superstructures via self-assembly of inherently homochiral Au8 nanoclusters, [Au8(R/S-BINAP)3(o-HMBA)2]·2(HCO3), is obtained in the crystalline state, in which the HCO3 ions act as the bridge.  相似文献   

14.
The X-ray structural study of the reaction product of equimolar amounts of [Au3Cu2(C2Ph)6]. [{Au(C2Ph)} n ], and [Ag(C2Ph)} n ] revealed two bimetallic anionic [N(PPh3)2] + [Au3Ag2(C2Ph)6] and [N(PPh3)2]+[Au3Cu2 (C2 Pg)6] — clusters co-crystallized in one asymmetric unit. Each cluster has trigonal bipyramidal geometry with three gold atoms occupying equatorial planes and two silver or copper atoms in the apical positions. Our earlier conclusion based upon spectroscopic characterization describing the product of be above reaction as trimetallic cluster containing three coinage-metals with an overall composition [Au3CuAg(C2Ph)6], was erroneous.Presented at the 210th ACS Meeting, August 19–24, 1995, Chicago, Illinois.  相似文献   

15.
16.
以2- 苯胺基-4,6- 二叔丁基苯酚(H2L)和FeCl2·4H2O为原料制备了一对手性半醌Fe(III) 络合物Λ-mer-[Fe(LISQ)3]和Δ-mer-[Fe(LISQ)3] (LISQ: 2-苯亚胺基-4, 6-二叔丁基苯酚, mer: 经式构型), 通过单晶X射线衍射分析结合单晶压制片膜的固体圆二色(CD)光谱确定了该络合物的绝对构型, 在此基础上建立了此类半醌络合物[M(LISQ)3] (M=Cr, Fe, Co)的惟手性金属中心绝对构型与固体CD光谱之间的关联. 此外, 还对10份合成的[Fe(LISQ)3]的大宗产物粉末与单晶的固体CD谱进行了比对分析, 以及对1 份合成产物进行10 次重结晶的固体CD 光谱表征. 研究表明该化合物在结晶过程中发生了镜面对称性破缺(MSB), 对映体过量(ee) 值在15%-100%之间.  相似文献   

17.
Au20(PP3)4Cl4 (PP3=tris(2‐(diphenylphosphino)ethyl) phosphine), abbreviated as Au20, is the only Au nanocluster with an intrinsically chiral core without a chiral environment (chiral ligands or Au‐thiolate staples), making it a unique object to understand chiral evolution and explore chiral applications. Unfortunately, the synthesized Au20 is racemic, and its enantiomers have not yet been separated. Herein, we report a supramolecular assembly strategy with α‐cyclodextrin (α‐CD) to afford enantiopure Au20 in bulk, and an enantiomer excess (ee) value of as‐separated Au20 of 97 %. As a result of its high purity, the distinctive optical activity of Au20, which originates from electronic transitions confined in chiral cores, is fully explored. Theoretical studies reveals that the enantioseparation results from the preferential self‐assembly of α‐CD with organic ligands on the surface of right‐handed Au20.  相似文献   

18.
Herein, a unique coordination system that exhibits multiple chiral inversions and molecular dimerization in response to a subtle pH change is reported. Treatment of (Δ)2‐H3[Au3Co2(L ‐cys)6] (H3[ 1 a ]) with [Co3(aet)6](NO3)3 (aet=2‐aminoethanethiolate) in water at pH 7 gave a 1:1 complex salt of [Co3(aet)6]3+ and [ 1 a ]3?, retaining the AuI3CoIII2 structure and chiral configurations of [ 1 a ]3?. Similar treatment at pH 9 led to not only the inversion of all of the chiral CoIII and S centers but also the dimerization of [ 1 a ]3?, giving a 2:1 complex salt of [Co3(aet)6]3+ and (Λ)4(R)12‐[Au6Co4(L ‐cys)12]6? ([ 2 ]6?). When dissociated from [Co3(aet)6]3+ in solution, [ 2 ]6? was converted to (Λ)2(R)6‐[Au3Co2(L ‐cys)6]3? ([ 1 b ]3?) with retention of the chiral configurations.  相似文献   

19.
Atomically precise enantiomeric metal clusters are scarce, and copper(I) alkynyl clusters with intense circularly polarized luminescence (CPL) responses have not been reported. A pair of chiral alkynyl ligands, (R/S)‐2‐diphenyl‐2‐hydroxylmethylpyrrolidine‐1‐propyne (abbreviated as R/S‐DPM ) we successfully prepared and single crystals were characterized of optically pure enantiomeric pair of atomically‐precise copper(I) clusters, [Cu14(R/S‐DPM)8](PF6)6 (denoted as R/S‐Cu14 ), which feature bright red luminescence and CPL with a high luminescence anisotropy factor (glum). A dilute solution containing R/S‐Cu14 was nonluminescent and CPL inactive at room temperature. Crystallization‐ and aggregation‐induced emission (CIE and AIE, respectively) contribute to the triggering of the CPL of R/S‐Cu14 in the crystalline and aggregated states. Their AIE behavior and good biocompatibility indicated applications of these copper(I) clusters in cell imaging in HeLa and NG108‐15 cells.  相似文献   

20.
Chiral Au nanoclusters have promising application prospects in chiral sensing, asymmetric catalysis, and chiroptics. However, enantiopure superatomic homogold clusters with crystallographic structures emitting bright circularly polarized luminescence (CPL) remain challenging. In this study, we designed chiral N-heterocyclic carbenes (NHCs), and for the first time enantioselectively synthesized a pair of monovalent cationic superatomic Au13 clusters. This new enantiomeric pair of clusters has a quasi-C2 symmetric core and exhibited CPL with an unprecedent solution-state quantum yield (QY) of 61 % among those of the atomically precise Au nanoclusters. DFT calculations provided insights into the circular dichroism behavior, and revealed the origin of CPL from superatomic Au clusters. This work opens a new avenue for developing novel homochiral nanoclusters using chiral NHC ligands and provides fundamental understanding of the origin of the chiroptics of metal clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号