共查询到20条相似文献,搜索用时 15 毫秒
1.
Hexaazatrinaphthylene Derivatives: Efficient Electron‐Transporting Materials with Tunable Energy Levels for Inverted Perovskite Solar Cells 下载免费PDF全文
Dr. Dongbing Zhao Dr. Zonglong Zhu Prof. Dr. Ming‐Yu Kuo Dr. Chu‐Chen Chueh Prof. Dr. Alex K.‐Y. Jen 《Angewandte Chemie (International ed. in English)》2016,55(31):8999-9003
Hexaazatrinaphthylene (HATNA) derivatives have been successfully shown to function as efficient electron‐transporting materials (ETMs) for perovskite solar cells (PVSCs). The cells demonstrate a superior power conversion efficiency (PCE) of 17.6 % with negligible hysteresis. This study provides one of the first nonfullerene small‐molecule‐based ETMs for high‐performance p–i–n PVSCs. 相似文献
2.
Jingru Zhang Gary Hodes Zhiwen Jin Shengzhong Liu 《Angewandte Chemie (International ed. in English)》2019,58(44):15596-15618
Recently, lead halide‐based perovskites have become one of the hottest topics in photovoltaic research because of their excellent optoelectronic properties. Among them, organic‐inorganic hybrid perovskite solar cells (PSCs) have made very rapid progress with their power conversion efficiency (PCE) now at 23.7 %. However, the intrinsically unstable nature of these materials, particularly to moisture and heat, may be a problem for their long‐term stability. Replacing the fragile organic group with more robust inorganic Cs+ cations forms the cesium lead halide system (CsPbX3, X is halide) as all‐inorganic perovskites which are much more thermally stable and often more stable to other factors. From the first report in 2015 to now, the PCE of CsPbX3‐based PSCs has abruptly increased from 2.9 % to 17.1 % with much enhanced stability. In this Review, we summarize the field up to now, propose solutions in terms of development bottlenecks, and attempt to boost further research in CsPbX3 PSCs. 相似文献
3.
Adam Wincukiewicz Ewelina Wierzyska Aliaksei Bohdan Mateusz Tokarczyk Krzysztof P. Korona Magdalena Skompska Maria Kamiska 《Molecules (Basel, Switzerland)》2022,27(22)
High-quality perovskite film with large grains and therefore reduced grain boundaries plays a significant role in improving the power conversion efficiency (PCE) and ensuring good long-term stability of the perovskite solar cells. In this work, we found that adding camphorsulfonic acid (CSA), a Lewis base, to the perovskite solution results in the crystallization of larger perovskite grains. By varying the concentration of CSA, we found that the optimal concentration of the additive is 1 mg/mL, which leads to an 20% increase in PCE of the cells compared to the reference CSA-free cell. Interestingly, we observed that the PCE of cells with an excess of CSA was initially poor, but may increase significantly over time, possibly due to CSA migration to the hole-transporting layer, leading to an improvement in its conductivity. 相似文献
4.
Jialong Duan Yudi Wang Xiya Yang Qunwei Tang 《Angewandte Chemie (International ed. in English)》2020,59(11):4391-4395
Improved charge extraction and wide spectral absorption promote power conversion efficiency of perovskite solar cells (PSCs). The state‐of‐the‐art carbon‐based CsPbBr3 PSCs have an inferior power output capacity because of the large optical band gap of the perovskite film and the high energy barrier at perovskite/carbon interface. Herein, we use alkyl‐chain regulated quantum dots as hole‐conductors to reduce charge recombination. By precisely controlling alkyl‐chain length of ligands, a balance between the surface dipole induced charge coulomb repulsive force and quantum tunneling distance is achieved to maximize charge extraction. A fluorescent carbon electrode is used as a cathode to harvest the unabsorbed incident light and to emit fluorescent light at 516 nm for re‐absorption by the perovskite film. The optimized PSC free of encapsulation achieves a maximum power conversion efficiency up to 10.85 % with nearly unchanged photovoltaic performances under 80 %RH, 80 °C, or light irradiation in air. 相似文献
5.
Laura Calió Dr. Samrana Kazim Prof. Michael Grätzel Dr. Shahzada Ahmad 《Angewandte Chemie (International ed. in English)》2016,55(47):14522-14545
The pressure to move towards renewable energy has inspired researchers to look for ideas in photovoltaics that may lead to a major breakthrough. Recently the use of perovskites as a light harvester has lead to stunning progress. The power conversion efficiency of perovskite solar cells is now approaching parity (>22 %) with that of the established technology which took decades to reach this level of performance. The use of a hole transport material (HTM) remains indispensable in perovskite solar cells. Perovskites can conduct holes, but they are present at low levels, and for efficient charge extraction a HTM layer is a prerequisite. Herein we provide an overview of the diverse types of HTM available, from organic to inorganic, in the hope of encouraging further research and the optimization of these materials. 相似文献
6.
Prof. Qunwei Tang Dr. Yanyan Duan Dr. Benlin He Dr. Haiyan Chen 《Angewandte Chemie (International ed. in English)》2016,55(46):14412-14416
Solar cells that can harvest energy in all weathers are promising in solving the energy crisis and environmental problems. The power outputs are nearly zero under dark conditions for state‐of‐the‐art solar cells. To address this issue, we present herein a class of platinum alloy (PtMx, M=Ni, Fe, Co, Cu, Mo) tailored all‐weather solar cells that can harvest energy from rain and realize photoelectric conversion under sun illumination. By tuning the stoichiometric Pt/M ratio and M species, the optimized solar cell yields a photoelectric conversion efficiency of 10.38 % under simulated sunlight irradiation (AM 1.5, 100 mW cm?2) as well as current of 3.90 μA and voltage of 115.52 μV under simulated raindrops. Moreover, the electric signals are highly dependent on the dripping velocity and the concentration of simulated raindrops along with concentrations of cation and anion. 相似文献
7.
Longbin Qiu Jue Deng Xin Lu Zhibin Yang Prof. Huisheng Peng 《Angewandte Chemie (International ed. in English)》2014,53(39):10425-10428
Perovskite solar cells have triggered a rapid development of new photovoltaic devices because of high energy conversion efficiencies and their all‐solid‐state structures. To this end, they are particularly useful for various wearable and portable electronic devices. Perovskite solar cells with a flexible fiber structure were now prepared for the first time by continuously winding an aligned multiwalled carbon nanotube sheet electrode onto a fiber electrode; photoactive perovskite materials were incorporated in between them through a solution process. The fiber‐shaped perovskite solar cell exhibits an energy conversion efficiency of 3.3 %, which remained stable on bending. The perovskite solar cell fibers may be woven into electronic textiles for large‐scale application by well‐developed textile technologies. 相似文献
8.
Norman Pellet Dr. Peng Gao Dr. Giuliano Gregori Dr. Tae‐Youl Yang Dr. Mohammad K. Nazeeruddin Prof. Joachim Maier Prof. Michael Grätzel 《Angewandte Chemie (International ed. in English)》2014,53(12):3151-3157
Hybrid organic–inorganic lead halide perovskite APbX3 pigments, such as methylammonium lead iodide, have recently emerged as excellent light harvesters in solid‐state mesoscopic solar cells. An important target for the further improvement of the performance of perovskite‐based photovoltaics is to extend their optical‐absorption onset further into the red to enhance solar‐light harvesting. Herein, we show that this goal can be reached by using a mixture of formamidinium (HN=CHNH3+, FA) and methylammonium (CH3NH3+, MA) cations in the A position of the APbI3 perovskite structure. This combination leads to an enhanced short‐circuit current and thus superior devices to those based on only CH3NH3+. This concept has not been applied previously in perovskite‐based solar cells. It shows great potential as a versatile tool to tune the structural, electrical, and optoelectronic properties of the light‐harvesting materials. 相似文献
9.
Masashi Ozaki Ai Shimazaki Mina Jung Yumi Nakaike Naoki Maruyama Shinya Yakumaru Alwani Imanah Rafieh Takahiro Sasamori Norihiro Tokitoh Piyasiri Ekanayake Yasujiro Murata Richard Murdey Atsushi Wakamiya 《Angewandte Chemie (International ed. in English)》2019,58(28):9389-9393
A high‐purity methylammonium lead iodide complex with intercalated dimethylformamide (DMF) molecules, CH3NH3PbI3?DMF, is introduced as an effective precursor material for fabricating high‐quality solution‐processed perovskite layers. Spin‐coated films of the solvent‐intercalated complex dissolved in pure dimethyl sulfoxide (DMSO) yielded thick, dense perovskite layers after thermal annealing. The low volatility of the pure DMSO solvent extended the allowable time for low‐speed spin programs and considerably relaxed the precision needed for the antisolvent addition step. An optimized, reliable fabrication method was devised to take advantage of this extended process window and resulted in highly consistent performance of perovskite solar cell devices, with up to 19.8 % power‐conversion efficiency (PCE). The optimized method was also used to fabricate a 22.0 cm2, eight‐cell module with 14.2 % PCE (active area) and 8.64 V output (1.08 V/cell). 相似文献
10.
3,4‐Phenylenedioxythiophene (PheDOT) Based Hole‐Transporting Materials for Perovskite Solar Cells 下载免费PDF全文
Jian Chen Bai‐Xue Chen Fang‐Shuai Zhang Hui‐Juan Yu Shuang Ma Prof. Dr. Dai‐Bin Kuang Dr. Guang Shao Prof. Dr. Cheng‐Yong Su 《化学:亚洲杂志》2016,11(7):1043-1049
Two new electron‐rich molecules based on 3,4‐phenylenedioxythiophene (PheDOT) were synthesized and successfully adopted as hole‐transporting materials (HTMs) in perovskite solar cells (PSCs). X‐ray diffraction, absorption spectra, photoluminescence spectra, electrochemical properties, thermal stabilities, hole mobilities, conductivities, and photovoltaic parameters of PSCs based on these two HTMs were compared with each other. By introducing methoxy substituents into the main skeleton, the energy levels of PheDOT‐core HTM were tuned to match with the perovskite, and its hole mobility was also improved (1.33×10?4 cm2 V?1 s?1, being higher than that of spiro‐OMeTAD, 2.34×10?5 cm2 V?1 s?1). The PSC based on MeO‐PheDOT as HTM exhibits a short‐circuit current density (Jsc) of 18.31 mA cm?2, an open‐circuit potential (Voc) of 0.914 V, and a fill factor (FF) of 0.636, yielding an encouraging power conversion efficiency (PCE) of 10.64 % under AM 1.5G illumination. These results give some insight into how the molecular structures of HTMs affect their performances and pave the way for developing high‐efficiency and low‐cost HTMs for PSCs. 相似文献
11.
A Fast Deposition‐Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin‐Film Solar Cells 下载免费PDF全文
Manda Xiao Dr. Fuzhi Huang Wenchao Huang Yasmina Dkhissi Dr. Ye Zhu Prof. Dr. Joanne Etheridge Dr. Angus Gray‐Weale Prof. Dr. Udo Bach Prof. Dr. Yi‐Bing Cheng Prof. Dr. Leone Spiccia 《Angewandte Chemie (International ed. in English)》2014,53(37):9898-9903
Thin‐film photovoltaics based on alkylammonium lead iodide perovskite light absorbers have recently emerged as a promising low‐cost solar energy harvesting technology. To date, the perovskite layer in these efficient solar cells has generally been fabricated by either vapor deposition or a two‐step sequential deposition process. We report that flat, uniform thin films of this material can be deposited by a one‐step, solvent‐induced, fast crystallization method involving spin‐coating of a DMF solution of CH3NH3PbI3 followed immediately by exposure to chlorobenzene to induce crystallization. Analysis of the devices and films revealed that the perovskite films consist of large crystalline grains with sizes up to microns. Planar heterojunction solar cells constructed with these solution‐processed thin films yielded an average power conversion efficiency of 13.9±0.7 % and a steady state efficiency of 13 % under standard AM 1.5 conditions. 相似文献
12.
经过短短十年的发展,钙钛矿太阳能电池效率已经超过25%,极具商业化价值,这得益于三维(3D)钙钛矿材料具有合适的带隙、吸光系数高、电子迁移距离长等优点。但3D钙钛矿的稳定性依然是其亟待解决的问题。二维(2D)钙钛矿器件除了兼具3D钙钛矿的优异光电性质之外,其稳定性良好,是解决3D钙钛矿太阳能电池稳定性问题的一个可行方案。2D钙钛矿晶格中的疏水性大烷基胺阳离子能阻止湿气侵入的可能路径,使其成为光电器件的备选材料。由于2D钙钛矿对许多不同的有机和无机成分具有较高的耐受性,使其组成具有多样性,进而影响其能带变化。本文对2D钙钛矿的带隙调控及能带调控进行总结,希望对制备高效、稳定的低维度钙钛矿太阳能电池具有一定的指导意义。 相似文献
13.
Xiaojuan Wang Xueqin Ran Xiaotao Liu Hao Gu Shouwei Zuo Wei Hui Hui Lu Bo Sun Xingyu Gao Jing Zhang Yingdong Xia Yonghua Chen Wei Huang 《Angewandte Chemie (International ed. in English)》2020,59(32):13354-13361
All‐inorganic lead halide perovskites are promising candidates for optoelectronic applications. However, fundamental questions remain over the component interaction in the perovskite precursor solution due to the limitation of the most commonly used solvents of N,N‐dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). Here, we report an interaction tailoring strategy for all‐inorganic CsPbI3?xBrx perovskites by involving the ionic liquid solvent methylammonium acetate (MAAc). C=O shows strong interaction with lead (Pb2+) and N?H???I hydrogen bond formation is observed. The interactions stabilize the perovskite precursor solution and allow production of the high‐quality perovskite films by retarding the crystallization. Without the necessity for antisolvent treatment, the one‐step air‐processing approach delivers photovoltaic cells regardless of humidity, with a high efficiency of 17.10 % along with long operation stability over 1500 h under continuous light illumination. 相似文献
14.
Dong Yang Ruixia Yang Shashank Priya Shengzhong Liu 《Angewandte Chemie (International ed. in English)》2019,58(14):4466-4483
Flexible perovskite solar cells have attracted widespread research effort because of their potential in portable electronics. The efficiency has exceeded 18 % owing to the high‐quality perovskite film achieved by various low‐temperature fabrication methods and matching of the interface and electrode materials. This Review focuses on recent progress in flexible perovskite solar cells concerning low‐temperature fabrication methods to improve the properties of perovskite films, such as full coverage, uniform morphology, and good crystallinity; demonstrated interface layers used in flexible perovskite solar cells, considering key figures‐of‐merit such as high transmittance, high carrier mobility, suitable band gap, and easy fabrication via low‐temperature methods; flexible transparent electrode materials developed to enhance the mechanical stability of the devices; mechanical and long‐term environmental stability; an outlook of flexible perovskite solar cells in portable electronic devices; and perspectives of commercialization for flexible perovskite solar cells based on cost. 相似文献
15.
Dr. Jiewei Liu Masashi Ozaki Shinya Yakumaru Taketo Handa Ryosuke Nishikubo Prof. Dr. Yoshihiko Kanemitsu Prof. Dr. Akinori Saeki Prof. Dr. Yasujiro Murata Dr. Richard Murdey Prof. Dr. Atsushi Wakamiya 《Angewandte Chemie (International ed. in English)》2018,57(40):13221-13225
Two simple methods to improve tin halide perovskite film structure are introduced, aimed at increasing the power conversion efficiency of lead free perovskite solar cells. First, a hot antisolvent treatment (HAT) was found to increase the film coverage and prevent electrical shunting in the photovoltaic device. Second, it was discovered that annealing under a low partial pressure of dimethyl sulfoxide vapor increased the average crystallite size. The topographical and electrical qualities of the perovskite films are substantively improved as a result of the combined treatments, facilitating the fabrication of tin‐based perovskite solar cell devices with power conversion efficiencies of over 7 %. 相似文献
16.
Yuhang Liu Seckin Akin Alexander Hinderhofer Felix T. Eickemeyer Hongwei Zhu Ji‐Youn Seo Jiahuan Zhang Frank Schreiber Hong Zhang Shaik M. Zakeeruddin Anders Hagfeldt M. Ibrahim Dar Michael Grtzel 《Angewandte Chemie (International ed. in English)》2020,59(36):15688-15694
As a result of their attractive optoelectronic properties, metal halide APbI3 perovskites employing formamidinium (FA+) as the A cation are the focus of research. The superior chemical and thermal stability of FA+ cations makes α‐FAPbI3 more suitable for solar‐cell applications than methylammonium lead iodide (MAPbI3). However, its spontaneous conversion into the yellow non‐perovskite phase (δ‐FAPbI3) under ambient conditions poses a serious challenge for practical applications. Herein, we report on the stabilization of the desired α‐FAPbI3 perovskite phase by protecting it with a two‐dimensional (2D) IBA2FAPb2I7 (IBA=iso‐butylammonium overlayer, formed via stepwise annealing. The α‐FAPbI3/IBA2FAPb2I7 based perovskite solar cell (PSC) reached a high power conversion efficiency (PCE) of close to 23 %. In addition, it showed excellent operational stability, retaining around 85 % of its initial efficiency under severe combined heat and light stress, that is, simultaneous exposure with maximum power tracking to full simulated sunlight at 80 °C over 500 h. 相似文献
17.
A Simple 3,4‐Ethylenedioxythiophene Based Hole‐Transporting Material for Perovskite Solar Cells 下载免费PDF全文
Dr. Hairong Li Kunwu Fu Prof. Anders Hagfeldt Prof. Michael Grätzel Prof. Subodh G. Mhaisalkar Prof. Andrew C. Grimsdale 《Angewandte Chemie (International ed. in English)》2014,53(16):4085-4088
We report a novel electron‐rich molecule based on 3,4‐ethylenedioxythiophene (H101). When used as the hole‐transporting layer in a perovskite‐based solar cell, the power‐conversion efficiency reached 13.8 % under AM 1.5G solar simulation. This result is comparable with that obtained using the well‐known hole transporting material 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene (spiro‐OMeTAD). This is the first heterocycle‐containing material achieving >10 % efficiency in such devices, and has great potential to replace the expensive spiro‐OMeTAD given its much simpler and cheaper synthesis. 相似文献
18.
Dr. Jialong Duan Dr. Yuanyuan Zhao Prof. Benlin He Prof. Qunwei Tang 《Angewandte Chemie (International ed. in English)》2018,57(14):3787-3791
All‐inorganic perovskite solar cells with high efficiency and improved stability are promising for commercialization. A multistep solution‐processing method was developed to fabricate high‐purity inorganic CsPbBr3 perovskite films for use in efficient solar cells. By tuning the number of deposition cycles (n) of a CsBr solution, the phase conversion from CsPb2Br5 (n ≤3), to CsPbBr3 (n=4), and Cs4PbBr6 (n≥5) was optimized to achieve vertical‐ and monolayer‐aligned grains. Upon interfacial modification with graphene quantum dots, the all‐inorganic perovskite solar cell (without a hole‐transporting layer) achieved a power conversion efficiency (PCE) as high as 9.72 % under standard solar illumination conditions. Under challenging conditions, such as 90 % relative humidity (RH) at 25 °C or 80 °C at zero humidity, the optimized device retained 87 % PCE over 130 days or 95 % over 40 days, compared to the initial efficiency. 相似文献
19.
Performance degradation under environmental conditions currently limits the practical utility of perovskite-based solar cells. The moisture stability of CH3NH3PbI3 perovskite films and solar cells was measured during exposure to three different levels of relative humidity. The films were crystallized at two different temperatures with and without simultaneous exposure to supercritical carbon dioxide. The film crystallinity, optical absorption, and device photoconversion efficiency was measured over time for three relative humidity levels and both crystallization methods. It was determined that film crystallization in supercritical CO2 resulted in significant improvement in moisture stability for films processed at 50 °C, but negligible improvement in stability for films processed at 100 °C. 相似文献
20.
Luis K. Ono Shengzhong Liu Yabing Qi 《Angewandte Chemie (International ed. in English)》2020,59(17):6676-6698
In several photovoltaic (PV) technologies, the presence of electronic defects within the semiconductor band gap limit the efficiency, reproducibility, as well as lifetime. Metal halide perovskites (MHPs) have drawn great attention because of their excellent photovoltaic properties that can be achieved even without a very strict film‐growth control processing. Much has been done theoretically in describing the different point defects in MHPs. Herein, we discuss the experimental challenges in thoroughly characterizing the defects in MHPs such as, experimental assignment of the type of defects, defects densities, and the energy positions within the band gap induced by these defects. The second topic of this Review is passivation strategies. Based on a literature survey, the different types of defects that are important to consider and need to be minimized are examined. A complete fundamental understanding of defect nature in MHPs is needed to further improve their optoelectronic functionalities. 相似文献