首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A series of substituted N‐methylaniline‐blocked polyisocyanates based on 4,4′‐methylenebis(phenyl isocyanate) and poly(tetrahydrofuran) were prepared and characterized thoroughly with FTIR, 1H NMR, and 13C NMR spectroscopy methods. Compared with unsubstituted N‐methylaniline, a blocking agent with an electron‐releasing substituent at the para position took a shorter time, whereas those with an electron‐releasing substituent at the ortho position or an electron‐withdrawing substituent at the ortho and para positions took longer times for the blocking reaction. The thermal dissociation reactions of blocked polyisocyanates were carried out with an FTIR spectrophotometer attached to hot‐stage accessories under dynamic and isothermal conditions. The dynamic method was used to determine the deblocking temperature, and the isothermal method was used to calculate the deblocking kinetics and activation parameters. The cure times of blocked polyisocyanates with hydroxyl‐terminated polybutadiene were also determined. The deblocking temperatures, the results of cure‐time studies, and the kinetic parameters revealed that the thermal dissociation of the N‐methylaniline‐blocked polyisocyanates was retarded by electron‐donating substituents and facilitated by electron‐withdrawing substituents. The action of N‐methylanilines as blocking agents for isocyanate was explained by the formation of a four‐center, intramolecularly hydrogen‐bonded ring structure during the thermal dissociation of the blocked polyisocyanates. The formation of such a hydrogen‐bonded ring structure was confirmed and supported by variable‐temperature 1H NMR studies and entropy parameters, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1557–1570, 2007  相似文献   

2.
A series of pyridinol-blocked isophorone isocyanates were synthesized through esterification reaction, Fries rearrangement, and blocking reaction and characterized by 1H-NMR, 13C-NMR, and Fourier transform infrared spectra. Based on the synthesized blocked isocyanates, the blocked waterborne polyurethane (BWPU) was prepared by the self-emulsification method. The deblocking studies revealed that the deblocking temperature reduces with electron-withdrawing and steric hindrance substituents on the ortho position of pyridinol. The stability, molecular weight (Mw), particle size, viscosity, and hydrophilicity of BWPU were studied and compared. The results showed that with an increased amount of blocking agents, molecular weight, particle size, and viscosity decrease and the hydrophilicity increases.  相似文献   

3.
For the purpose of reducing the induction period of the ring‐opening polymerization of N‐methyl‐1,3‐benzoxazines, several urethanes were examined as promoters. The examined promoters 3a – d were the adducts of resorcinol and phenyl isocyanate, that of bisphenol A and phenyl isocyanate, that of resorcinol and butyl isocyanate, and that of 1,3‐propanediol and phenyl isocyanate, respectively. The aromatic urethanes 3a and 3b , which were adducts of the phenolic compounds and phenyl isocyanate, exhibited significant promoting effects. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
Polymer brushes present a unique architecture for tailoring surface functionalities due to their distinctive physicochemical properties. However, the polymerization chemistries used to grow brushes place limitations on the monomers that can be grown directly from the surface. Several forms of click chemistry have previously been used to modify polymer brushes by postpolymerization modification with high efficiency, however, it is usually difficult to include the unprotected moieties in the original monomer. We present the use of a new form of click chemistry known as SuFEx (sulfur(VI) fluoride exchange), which allows a silyl ether to be rapidly and quantitatively clicked to a polymer brush grown by free‐radical polymerization containing native ‐SO2F groups with rapid pseudo‐first‐order rates as high as 0.04 s?1. Furthermore, we demonstrate the use of SuFEx to facilely add a variety of other chemical functional groups to brush substrates that have highly useful and orthogonal reactivity, including alkynes, thiols, and dienes.  相似文献   

5.
Methyl anacardate and secondary butyl anacardate were prepared from anacardic acid and corresponding alcohols and were used, in addition to cardanol, as blocking agents for 2,4‐toluene diisocyanate (TDI). Blocked diisocyanate adducts were characterized via nitrogen estimation, Fourier transform infrared spectroscopy, and proton nuclear magnetic resonance spectroscopy. The deblocking temperatures of the adducts were determined using an FTIR spectrophotometer in conjunction with the carbon dioxide evolution method. The gel times of hydroxyl‐terminated polybutadiene–TDI adducts also were determined. Deblocking temperature and gel time analyses revealed that cardanol‐blocked 2,4‐TDI deblocks at a lower temperature and at a higher rate compared with anacardate‐blocked adducts. In addition, it was found that the electron‐withdrawing ester group reduces the deblocking temperature of the adduct only when it is in solvated form. All adducts were waxy solids that were found to be soluble in polyether polyol, polyester polyol, and polyhydrocarbon polyols. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4047–4055, 2004  相似文献   

6.
Furan ring‐functionalized solid surfaces are achieved by the initiated chemical vapor deposition (iCVD) method, a solvent‐free process to form films under mild conditions. The polymerization of furfuryl methacrylate monomer is initiated by a resistively heated filament wire. The functionality of the furan group in the iCVD film enabled Diels–Alder chemistry with 4‐phenyl‐1,2,3‐triazolin‐3,5‐dione (N‐PTD).

  相似文献   


7.
Polyphosphazenes are ready to move from the level of a mere scientific curiosity to the rank of industrially and commercially important macromolecules because they have experienced an explosive development during the last 10 years. In this paper, novel linear poly [bis‐(phenoxy) 1.8 (4‐hydroxybutaneoxy) 0.2 phosphazene] (PPHBP) was synthesized and characterized by FTIR, NMR, and GPC. Then, a series of new thermosetting polyphosphazene‐urethanes (PPU)s were prepared by using PPHBP polyol via a two‐step method. The FTIR spectra have showed the PPUs were successfully prepared. Compared to conventional polyurethane, the results of differential scanning calorimetry (DSC) and thermogravimetric analysis (TG) have indicated that the PPUs exhibited better thermal stability and flame resistance. The study on water contact angle showed that PPUs were more hydrophobic than conventional polyurethane. This may widen the opportunities for producing a new class of polyurethanes with broad range of uses. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Two series of N-methylaniline-blocked isocyanates based on monomeric diisocyanates such as 4,4′-methylene bis(phenyl isocyanate), toluene-2,4-diisocyanate, isophorone diisocyanate and 1,6-diisocyanato hexane and their NCO terminated polyurethane prepolymer (polyisocyanates) were prepared and characterized thoroughly by FTIR, 1H NMR, 13C NMR and EI-Mass spectroscopic methods. The blocking reaction of N-methylaniline with aromatic isocyanates and aromatic polyisocyanates occur faster when compared to the aliphatic isocyanates. The deblocking reactions of blocked isocyanates were carried out under dynamic and isothermal conditions using hot-stage FTIR spectrophotometer. The dynamic method was used to determine the deblocking temperature, and the isothermal method was used to calculate kinetics and thermodynamics parameters. Cure reactions of blocked isocyanates with hydroxyl-terminated polybutadiene were also followed to establish the structure-property relationship of the N-methylaniline-blocked isocyanates. The deblocking studies of blocked isocyanates reveal that the aromatic isocyanates undergo deblocking easily compared to aliphatic isocyanates. The rate of deblocking reaction of N-methylaniline-blocked aromatic polyisocyanates was found to be higher compared to N-methylaniline-blocked aromatic monomeric diisocyanate adducts. On the other hand, this trend was just reverse in the cure-reaction studies. The dissolution behavior of N-methylaniline-blocked isocyanates in Terathane-2000, polypropylene glycol-2000, polycaprolactone diol-2000 and hydroxyl-terminated polybutadiene-2500 was also studied and found that all adducts are soluble in these polyols.  相似文献   

9.
Polyurethane–nanosilica hybrids were synthesized with frontal polymerization. Structurally well‐dispersed and stable hybrids were obtained via a two‐step functionalization process: First, the silica was encapsulated with 3‐aminopropyltriethoxysilane (APTS). Second, poly(propylene oxide) glycol, toluene 2,4‐diisocyanate, 1,4‐butanediol, and a catalyst (stannous caprylate) were dissolved in dimethylbenzene and mixed together at room temperature along with the modified nanosilica. A constant‐velocity propagating front was initiated via the heating of the end of the tubular reactor. For the complete encapsulation of the silica with APTS, different weight ratios of APTS to silica were investigated. The polyurethane hybrids were characterized with Fourier transform infrared, differential scanning calorimetry, and transmission electron microscopy. The polyurethane hybrids produced by frontal polymerization had the same properties as those produced by batch polymerization with stirring, but the frontal polymerization method required significantly less time and lower energy input than the batch polymerization method. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1670–1680, 2005  相似文献   

10.
The catalysis of imidine formation between an amine‐blocked polyurethane prepolymer and bisphthalide was studied with a series of metal alkoxides, phenoxides, and organotin compounds and tertiary amines. The carbon dioxide released during the reaction was followed for monitoring of the reaction. The metal alkoxides and phenoxides catalyzed the imidine formation reaction but did not catalyze the deblocking reaction, whereas the organotin compounds and tertiary amines showed no catalytic activity in the reaction between isocyanate and phthalide. With tin catalysts, the imidine formation reaction depended on the deblocking of the blocked prepolymer, but it was independent of deblocking with amine catalysts. The resultant poly(urethane imidine) copolymers were characterized with Fourier transform infrared, 1H NMR, 13C NMR, gel permeation chromatography, and thermogravimetric analysis techniques. The thermal stability of polyurethane increased significantly with the incorporation of imidine groups. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4236–4242, 2001  相似文献   

11.
The reactivity of urethanes based on 1,6‐hexamethylene diisocyanate (HDI) and 4,4′‐methylene diphenyl diisocyanate (MDI) was investigated at temperatures between 190 °C and 235 °C. Diurethane model compounds end‐capped with either 1‐dodecanol (D‐core‐D) or 1‐hexadecanol (H‐core‐H) were mixed and annealed at high temperature. The core was either MDI or HDI. The transurethanization reaction was followed based on the formation of the compounds (H‐core‐D). The amount of H‐core‐D and of side products, which had formed after variable annealing times, were identified with 1H NMR, FTIR, SEC, and MALDI‐TOF. Transurethanization was considerably faster for MDI‐based urethanes than for HDI‐based urethanes. Only traces of side products were formed during annealing of MDI‐based urethanes, whereas a significant amount of allophanates was formed from HDI‐based urethanes under the same conditions. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 621–629  相似文献   

12.
Post‐polymerization modification (PPM) of polymers is extremely beneficial in terms of designing brand new synthetic pathways toward functional complex polymers. Fortunately, the new developments in the field of organic chemistry along with controlled/living radical polymerization (CLRP) techniques have enabled scientists to readily design and synthesize the functionalized‐polymers for wide range of applications via the PPM. In this regard, the reactivity of para‐fluorine atom in the fluorinated aromatic structures toward the nucleophilic substitution reactions has made the polymers possessing this group to become a very strong candidate that can undergo efficient PPM. Besides, it has been proven that the thiol‐functionalized compounds react with the para‐fluorine atom of the pentafluorophenyl group more rapidly and efficiently than the amine‐ and the hydroxyl‐functionalized compounds. Furthermore, the milder experimental conditions to achieve quantitative conversions have led to the reaction between the thiol and the structures possessing pentafluorophenyl groups to be referred to as a click‐type reaction. Given this information, this review article aims to present the scientific developments regarding the thiol‐para‐fluoro “click” (TPF‐click) chemistry, and its impact on PPM to construct novel polymeric structures. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1181–1198  相似文献   

13.
The catalytic chemical fixation of carbon dioxide by carbonation of oxiranes, oxetanes, and polyols represents a very versatile green chemistry route to environmentally benign di‐ and polyfunctional cyclic carbonates as intermediates for the formation of non‐isocyanate poly­urethane (NIPU). Two synthetic pathways lead to NIPU thermoplastics and thermosets: i) polycondensation of diacarbamates or acyclic dicarbonates with diols or diamines, respectively, and ii) polyaddition by ring‐opening polymerization of di‐ and polyfunctional cyclic carbonates with di‐ and polyamines. The absence of hazardous and highly moisture‐sensitive isocyanates as intermediates eliminates the need for special safety precautions, drying and handling procedures. Incorporated into polymer backbones and side chains, carbonate groups enable facile tailoring of a great variety of urethane‐functional polymers. As compared with conventional polyurethanes, ring‐opening polymerization of polyfunctional cyclic carbonates affords polyhydroxyurethanes with unconventional architectures including NIPUs containing carbohydrate segments. NIPU/epoxy hybrid coatings can be applied on wet surfaces and exhibit improved adhesion, thermal stability and wear resistance. Combining chemical with biological carbon dioxide fixation affords 100% bio‐based NIPUs derived from plant oils, terpenes, carbohydrates, and bio polyols. Biocompatible and biodegradable NIPU as well as NIPU biocomposites hold great promise for biomedical applications.

  相似文献   


14.
Results of studies on synthesis and properties of siloxane–urethane prepolymers as well as on selected properties of moisture‐cured silicone–urethanes have already been published. In this paper, some results of investigations of the effect of chemical structure of such silicone–urethane polymers on their phase seggregation investigated using mainly (TEM) transmission electron microscopy and small‐angle x‐ray scattering (SAXS) techniques are presented. It was found in TEM studies that in silicone‐urethanes obtained by moisture‐curing of NCO‐terminated prepolymers prepared from siloxane oligomer diols (SOD) and isophoronediisocyanate (IPDI), two factors determine the morphology of samples: length of siloxane chain and NCO/OH ratio. SAXS investigations showed that these silicone–urethanes had a lamellar structure. It was found that the long period of this structure changed from 4 to 9 nanometers as the siloxane chain length increased nine times. The increase of the long period correlated with the decrease of Young's modulus of the corresponding samples. TEM investigations of silicone–urethanes obtained by moisture‐curing of NCO‐terminated prepolymers prepared from the blends of SOD and polyoxypropylenediol (PPG) revealed complex morphology which depended on the SOD/PPG ratio. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
This article focuses on why and how the chemical synthesis of cellulose was accomplished. The synthesis of cellulose was an important, challenging problem for half a century in polymer chemistry. For the synthesis, a new method of enzymatic polymerization was developed. A monomer of β‐D ‐cellobiosyl fluoride (β‐CF) was designed and subjected to cellulase catalysis, which led to synthetic cellulose for the first time. Cellulase is a hydrolysis enzyme of cellulose; cellulase, inherently catalyzing the bond cleavage of cellulose in vivo, catalyzes the bond formation via the polycondensation of β‐CF in vitro. It is thought that the polymerization and hydrolysis involve a common intermediate (transition state). This view led us to a new concept, a transition‐state analogue substrate, for the design of the monomer. The preparation of cellulase proteins with biotechnology revealed the enzymatic catalytic functions in the hydrolysis and polymerization to cellulose. High‐order molecular structures were in situ formed and observed as fibrils (cellulose I) and spherulites (cellulose II). In situ small‐angle neutron scattering measurements suggested a fractal surface formation of a synthetic cellulose assembly. The principle of cellulose synthesis was extended to the synthesis of other natural polysaccharides, such as xylan and amylose, and unnatural polysaccharides. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 693–710, 2005  相似文献   

16.
Click chemistry, one of the most important methods in conjugation, plays an extremely significant role in the synthesis of functional aliphatic polycarbonates, which are a group of biodegradable polymers containing carbonate bonds in their main chains. To date, more than 75 articles have been reported on the topic of click chemistry in functional aliphatic polycarbonates. However, these efforts have not yet been highlighted. Six categories of click reactions (alkyne‐azide reaction, thiol‐ene reaction, Michael addition, epoxy‐amine/thiol reaction, Diels‐Alder reaction, and imine formation) that have been afforded for further post‐polymerization modification of polycarbonates are reviewed. Through this review, a comprehensive understanding of functional aliphatic polycarbonates aims to afford insight on the design of polycarbonates for further post‐polymerization modification via click chemistry and the expectation of the practical application.  相似文献   

17.
Mechanical initiation of polymerization offers the chance to generate polymers in new environments using an energy source with unique capabilities. Recently, a renewed interest in mechanically controlled polymerization has yielded many techniques for controlled radical polymerization by ultrasound. However, other types of polymerizations induced by mechanical activation are rare, especially for generating high‐molecular‐weight polymers. Herein is an example of using piezoelectric ZnO nanoparticles to generate free‐radical species that initiate chain‐growth polymerization and polymer crosslinking. The fast generation of high amounts of reactive radicals enable the formation of polymer/gel by ultrasound activation. This chemistry can be used to harness mechanical energy for constructive purposes in polymeric materials and for controlled polymerizations for bulk‐scale reactions.  相似文献   

18.
Porous biodegradable poly(urethanes) for reconstructing menisci have been prepared using two different combinations of techniques: freeze-drying/salt-leaching and in-situ polymerization/salt-leaching. Using these methods, homogenous porous materials with a controllable and reproducible morphology can be prepared. The materials were made of three different poly(urethanes): a methylenediphenyldiisocyanate-based polyurethane, a lysine diisocyanate-based poly(urethane), and a poly(-caprolactone)-based poly(urethane). The compressive stress-strain behavior of the Estane foams was determined. Foams made by the freeze-drying/salt-leaching technique implanted in dogs showed healing and good ingrowth of fibrocartilaginous tissue.  相似文献   

19.
The purpose of our study was to design a new class of acrylate‐based monomers with an UV‐cleavable heteroatom bond, offering the possibility to initiate radical polymerization upon irradiation with UV‐light. A method to derive the double bond conversion from the ATR‐IR spectra of the monomers and the cured polymers was employed, that enabled us to calculate the theoretical polymerization heats of the new monomers. Their photopolymerization properties were determined by Photo Differential Scanning Calorimetry. Surprisingly, some of these new compounds exhibited high photoinitiation activity, comparable to well‐established Type II photoinitiator systems like benzophenone/triethanolamine. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 392–403, 2009  相似文献   

20.
A tailor‐made polymethacrylate bearing a pendant furfuryl group was prepared by atom transfer radical polymerization (ATRP), an important method of recent advances in controlled radical polymerization. It was otherwise difficult to prepare via conventional radical polymerization, because of several side reactions involving the reactive diene functionality of the furfuryl group. Successful Diels–Alder (DA) chemistry was carried out using this reactive furfuryl group of the tailor‐made polymer as diene and a bismaleimide as a dienophile. Interestingly, the resultant material was observed to be thermoreversible as evidenced by FT‐IR and DSC studies. This example of application of a tailor‐made polymer having controlled molecular architecture and with reactive diene functionality in DA chemistry will open new possibilities to prepare newer tailor‐made reversible materials. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4441–4449, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号