首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Alkali metal–oxygen batteries are of great interests for energy storage because of their unparalleled theoretical energy densities. Particularly attractive is the emerging Na–O2 battery because of the formation of superoxide as the discharge product. Dimethyl sulfoxide (DMSO) is a promising solvent for this battery but its instability towards Na makes it impractical in the Na–O2 battery. Herein we report the enhanced stability of Na in DMSO solutions containing concentrated sodium trifluoromethanesulfonimide (NaTFSI) salts (>3 mol kg?1). Raman spectra of NaTFSI/DMSO electrolytes and ab initio molecular dynamics simulation reveal the Na+ solvation number in DMSO and the formation of Na(DMSO)3(TFSI)‐like solvation structure. The majority of DMSO molecules solvating Na+ in concentrated solutions reduces the available free DMSO molecules that can react with Na and renders the TFSI anion decomposition, which protects Na from reacting with the electrolyte. Using these concentrated electrolytes, Na–O2 batteries can be cycled forming sodium superoxide (NaO2) as the sole discharge product with improved long cycle life, highlighting the beneficial role of concentrated electrolytes for Na‐based batteries.  相似文献   

2.
A mixture electrolyte based on dimethyl sulfoxide (DMSO) and 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide, [BMP][NTf2], with excellent reversibility of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) has been reported for Li–O2 batteries. The effect of the mixture electrolyte on current density, oxygen solubility, diffusion coefficient and oxygen reduction reaction (ORR) mechanism was investigated. The presence of [BMP][NTf2] increases the solubility of oxygen and while DMSO improves the reversibility of ORR and OER by facilitating the solubility of Li2Ox. Cyclic voltammetric studies showed that mixed electrolyte showed significantly enhanced current density and reversibility for ORR and OER compared to pure DMSO or [BMP][NTf2].  相似文献   

3.
The lithium–oxygen battery has the potential to deliver extremely high energy densities; however, the practical use of Li‐O2 batteries has been restricted because of their poor cyclability and low energy efficiency. In this work, we report a novel Li‐O2 battery with high reversibility and good energy efficiency using a soluble catalyst combined with a hierarchical nanoporous air electrode. Through the porous three‐dimensional network of the air electrode, not only lithium ions and oxygen but also soluble catalysts can be rapidly transported, enabling ultra‐efficient electrode reactions and significantly enhanced catalytic activity. The novel Li‐O2 battery, combining an ideal air electrode and a soluble catalyst, can deliver a high reversible capacity (1000 mAh g?1) up to 900 cycles with reduced polarization (about 0.25 V).  相似文献   

4.
The rechargeable K‐O2 battery is recognized as a promising energy storage solution owing to its large energy density, low overpotential, and high coulombic efficiency based on the single‐electron redox chemistry of potassium superoxide. However, the reactivity and long‐term stability of potassium superoxide remains ambiguous in K‐O2 batteries. Parasitic reactions are explored and the use of ion chromatography to quantify trace amounts of side products is demonstrated. Both quantitative titrations and differential electrochemical mass spectrometry confirm the highly reversible single‐electron transfer process, with 98 % capacity attributed to the formation and decomposition of KO2. In contrast to the Na‐O2 counterparts, remarkable shelf‐life is demonstrated for K‐O2 batteries owing to the thermodynamic and kinetic stability of KO2, which prevents the spontaneous disproportionation to peroxide. This work sheds light on the reversible electrochemical process of K++e?+O2?KO2.  相似文献   

5.
The reduction of dioxygen in the presence of sodium cations can be tuned to give either sodium superoxide or sodium peroxide discharge products at the electrode surface. Control of the mechanistic direction of these processes may enhance the ability to tailor the energy density of sodium–oxygen batteries (NaO2: 1071 Wh kg?1 and Na2O2: 1505 Wh kg?1). Through spectroelectrochemical analysis of a range of non‐aqueous solvents, we describe the dependence of these processes on the electrolyte solvent and subsequent interactions formed between Na+ and O2?. The solvents ability to form and remove [Na+‐O2?]ads based on Gutmann donor number influences the final discharge product and mechanism of the cell. Utilizing surface‐enhanced Raman spectroscopy and electrochemical techniques, we demonstrate an analysis of the response of Na‐O2 cell chemistry with sulfoxide, amide, ether, and nitrile electrolyte solvents.  相似文献   

6.
Lithium-oxygen batteries (LOBs) are well known for their high energy density. However, their reversibility and rate performance are challenged due to the sluggish oxygen reduction/evolution reactions (ORR/OER) kinetics, serious side reactions and uncontrollable Li dendrite growth. The electrolyte plays a key role in transport of Li+ and reactive oxygen species in LOBs. Here, we tailored a dilute electrolyte by screening suitable crown ether additives to promote lithium salt dissociation and Li+ solvation through electrostatic interaction. The electrolyte containing 100 mM 18-crown-6 ether (100-18C6) exhibits enhanced electrochemical stability and triggers a solution-mediated Li2O2 growth pathway in LOBs, showing high discharge capacity of 10 828.8 mAh gcarbon−1. Moreover, optimized electrode/electrolyte interfaces promote ORR/OER kinetics on cathode and achieve dendrite-free Li anode, which enhances the cycle life. This work casts new lights on the design of low-cost dilute electrolytes for high performance LOBs.  相似文献   

7.
In superoxide batteries based on O2/O2? redox chemistry, identifying an electrolyte to stabilize both the alkali metal and its superoxide remains challenging owing to their reactivity towards the electrolyte components. Bis(fluorosulfonyl)imide (FSI?) has been recognized as a “magic anion” for passivating alkali metals. The KFSI–dimethoxyethane electrolyte passivates the potassium metal anode by cleavage of S?F bonds and the formation of a KF‐rich solid–electrolyte interphase (SEI). However, the KFSI salt is chemically unstable owing to nucleophilic attack by superoxide and/or hydroxide species. On the other hand, potassium bis(trifluorosulfonyl)imide (KTFSI) is stable to KO2, but results in mossy potassium deposits and irreversible plating and stripping. To circumvent this dilemma, we developed an artificial SEI for the metal anode and thus long‐cycle‐life K–O2 batteries. This study will guide the development of stable electrolytes and artificial SEIs for metal–O2 batteries.  相似文献   

8.
A battery cathode based on the superoxide/peroxide redox not only inherits the advantage of oxygen (O2) batteries in high capacities and low costs but also overcomes the disadvantages in O2 storage, electrolyte evaporation, and anode deactivation due to O2 crossover. Herein, we report an enhanced potassium superoxide (KO2)/peroxide (K2O2) conversion by adopting a high-donicity anion additive in the ether-based electrolyte. Such an anion was synthesized via a “Solvent-in-Anion” strategy and validated to enhance the electron donicity of the electrolyte. The use of high-donicity anion could lead to enhanced KO2 utilization (≈90.2 %) by retarding electrode passivation and allow the full charging back of K2O2 through the solution-mediated pathway without electrocatalysts. No apparent cell degradation is observed during the first 120 cycles by controlling the reversible depth-of-discharge capacity at 292 mAh g−1 within an O2-free region. The K−KO2 cell delivers a high energy efficiency (>84.4 %) and a lifespan of over 1440 hours.  相似文献   

9.
A stochastic investigation of lithium deinsertion from individual 200‐nm‐sized particles of LiMn2O4 reveals the rate‐determining step at high overpotentials to be the transfer of the cation across the particle–electrolyte interface. Measurement of the (electro)chemical behavior of the spinel is undertaken without forming a conductive composite electrode. The kinetics of the interfacial ion transfer defines a theoretical upper limit for the discharge rates of batteries using LiMn2O4 in an aqueous environment.  相似文献   

10.
Although using an air cathode is the goal for superoxide‐based potassium‐oxygen (K‐O2) batteries, prior studies were limited to pure oxygen. Now, the first K‐air (dry) battery based on reversible superoxide electrochemistry is presented. Spectroscopic and gas chromatography analyses are applied to evaluate the reactivity of KO2 in ambient air. Although KO2 reacts with water vapor and CO2 to form KHCO3, it is highly stable in dry air. With this knowledge, rechargeable K‐air (dry) batteries were successfully demonstrated by employing dry air cathode. The reduced partial pressure of oxygen plays a critical role in boosting battery lifespan. With a more stable environment for the K anode, a K‐air (dry) battery delivers over 100 cycles (>500 h) with low round‐trip overpotentials and high coulombic efficiencies as opposed to traditional K‐O2 battery that fails early. This work sheds light on the benefits and restrictions of employing the air cathode in superoxide‐based batteries.  相似文献   

11.
Aprotic lithium–oxygen (Li–O2) batteries have attracted considerable attention in recent years owing to their outstanding theoretical energy density. A major challenge is their poor reversibility caused by degradation reactions, which mainly occur during battery charge and are still poorly understood. Herein, we show that singlet oxygen (1Δg) is formed upon Li2O2 oxidation at potentials above 3.5 V. Singlet oxygen was detected through a reaction with a spin trap to form a stable radical that was observed by time‐ and voltage‐resolved in operando EPR spectroscopy in a purpose‐built spectroelectrochemical cell. According to our estimate, a lower limit of approximately 0.5 % of the evolved oxygen is singlet oxygen. The occurrence of highly reactive singlet oxygen might be the long‐overlooked missing link in the understanding of the electrolyte degradation and carbon corrosion reactions that occur during the charging of Li–O2 cells.  相似文献   

12.
When aprotic Li–O2 batteries discharge, the product phase formed in the cathode often contains two different morphologies, that is, crystalline and amorphous Li2O2. The morphology of Li2O2 impacts strongly on the electrochemical performance of Li–O2 cells in terms of energy efficiency and rate capability. Crystalline Li2O2 is readily available and its properties have been studied in depth for Li–O2 batteries. However, little is known about the amorphous Li2O2 because of its rarity in high purity. Herein, amorphous Li2O2 has been synthesized by a rapid reaction of tetramethylammonium superoxide and LiClO4 in solution, and its amorphous nature has been confirmed by a range of techniques. Compared with its crystalline siblings, amorphous Li2O2 demonstrates enhanced charge‐transport properties and increased electro‐oxidation kinetics, manifesting itself a desirable discharge phase for high‐performance Li–O2 batteries.  相似文献   

13.
Non‐aqueous lithium–oxygen batteries are considered as most advanced power sources, albeit they are facing numerous challenges concerning almost each cell component. Herein, we diverge from the conventional and traditional liquid‐based non‐aqueous Li–O2 batteries to a Li–O2 system based on a solid polymer electrolyte (SPE‐) and operated at a temperature higher than the melting point of the polymer electrolyte, where useful and most applicable conductivity values are easily achieved. The proposed SPE‐based Li‐O2 cell is compared to Li–O2 cells based on ethylene glycol dimethyl ether (glyme) through potentiodynamic and galvanostatic studies, showing a higher cell discharge voltage by 80 mV and most significantly, a charge voltage lower by 400 mV. The solid‐state battery demonstrated a comparable discharge‐specific capacity to glyme‐based Li–O2 cells when discharged at the same current density. The results shown here demonstrate that the safer PEO‐based Li–O2 battery is highly advantageous and can potentially replace the contingent of liquid‐based cells upon further investigation.  相似文献   

14.
Li‐O2 batteries are promising candidates for next‐generation high‐energy‐density battery systems. However, the main problems of Li–O2 batteries include the poor rate capability of the cathode and the instability of the Li anode. Herein, an ester‐based liquid additive, 2,2,2‐trichloroethyl chloroformate, was introduced into the conventional electrolyte of a Li–O2 battery. Versatile effects of this additive on the oxygen cathode and the Li metal anode became evident. The Li–O2 battery showed an outstanding rate capability of 2005 mAh g?1 with a remarkably decreased charge potential at a large current density of 1000 mA g?1. The positive effect of the halide ester on the rate capacity is associated with the improved solubility of Li2O2 in the electrolyte and the increased diffusion rate of O2. Furthermore, the ester promotes the formation of a solid–electrolyte interphase layer on the surface of the Li metal, which restrains the loss and volume change of the Li electrode during stripping and plating, thereby achieving a cycling stability over 900 h and a Li capacity utilization of up to 10 mAh cm?2.  相似文献   

15.
Lithium–air batteries when operated in ambient air generally exhibit poor reversibility and cyclability, because of the Li passivation and Li2O2/LiOH/Li2CO3 accumulation in the air electrode. Herein, we present a Li–air battery supported by a polymer electrolyte containing 0.05 m LiI, in which the polymer electrolyte efficiently alleviates the Li passivation induced by attacking air. Furthermore, it is demonstrated that I/I2 conversion in polymer electrolyte acts as a redox mediator that facilitates electrochemical decomposition of the discharge products during recharge process. As a result, the Li–air battery can be stably cycled 400 times in ambient air (relative humidity of 15 %), which is much better than previous reports. The achievement offers a hope to develop the Li–air battery that can be operated in ambient air.  相似文献   

16.
Lithium–oxygen (Li–O2) batteries have attracted extensive research interest due to their high energy density. Other than Li2O2 (a typical discharge product in Li–O2 batteries), LiOH has proved to be electrochemically active as an alternative product. Here we report a simple strategy to achieve a reversible LiOH-based Li–O2 battery by using a cation additive, sodium ions, to the lithium electrolyte. Without redox mediators in the cell, LiOH is detected as the sole discharge product and it charges at a low charge potential of 3.4 V. A solution-based reaction route is proposed, showing that the competing solvation environment of the catalyst and Li+ leads to LiOH precipitation at the cathode. It is critical to tune the cell chemistry of Li–O2 batteries by designing a simple system to promote LiOH formation/decomposition.  相似文献   

17.
Lithium–air batteries when operated in ambient air generally exhibit poor reversibility and cyclability, because of the Li passivation and Li2O2/LiOH/Li2CO3 accumulation in the air electrode. Herein, we present a Li–air battery supported by a polymer electrolyte containing 0.05 m LiI, in which the polymer electrolyte efficiently alleviates the Li passivation induced by attacking air. Furthermore, it is demonstrated that I/I2 conversion in polymer electrolyte acts as a redox mediator that facilitates electrochemical decomposition of the discharge products during recharge process. As a result, the Li–air battery can be stably cycled 400 times in ambient air (relative humidity of 15 %), which is much better than previous reports. The achievement offers a hope to develop the Li–air battery that can be operated in ambient air.  相似文献   

18.
Aprotic sodium–O2 batteries require the reversible formation/dissolution of sodium superoxide (NaO2) on cycling. Poor cycle life has been associated with parasitic chemistry caused by the reactivity of electrolyte and electrode with NaO2, a strong nucleophile and base. Its reactivity can, however, not consistently explain the side reactions and irreversibility. Herein we show that singlet oxygen (1O2) forms at all stages of cycling and that it is a main driver for parasitic chemistry. It was detected in‐ and ex‐situ via a 1O2 trap that selectively and rapidly forms a stable adduct with 1O2. The 1O2 formation mechanism involves proton‐mediated superoxide disproportionation on discharge, rest, and charge below ca. 3.3 V, and direct electrochemical 1O2 evolution above ca. 3.3 V. Trace water, which is needed for high capacities also drives parasitic chemistry. Controlling the highly reactive singlet oxygen is thus crucial for achieving highly reversible cell operation.  相似文献   

19.
The non‐aqueous Li–air (O2) battery has attracted intensive interest because it can potentially store far more energy than today′s batteries. Presently Li–O2 batteries suffer from parasitic reactions owing to impurities, found in almost all non‐aqueous electrolytes. Impurities include residual protons and protic compounds that can react with oxygen species, such as the superoxide (O2?), a reactive, one‐electron reduction product of oxygen. To avoid the parasitic reactions, it is crucial to have a fundamental understanding of the conditions under which reactive oxygen species are generated in non‐aqueous electrolytes. Herein we report an in situ spectroscopic study of oxygen reduction on gold in a dimethyl sulfoxide electrolyte containing phenol as a proton source. It is shown directly that O2?, not HO2, is the first stable intermediate during the oxygen reduction process to hydrogen peroxide. The unusual stability of O2? is explained using density functional theory (DFT) calculations.  相似文献   

20.
Singlet oxygen (1O2) causes a major fraction of the parasitic chemistry during the cycling of non‐aqueous alkali metal‐O2 batteries and also contributes to interfacial reactivity of transition‐metal oxide intercalation compounds. We introduce DABCOnium, the mono alkylated form of 1,4‐diazabicyclo[2.2.2]octane (DABCO), as an efficient 1O2 quencher with an unusually high oxidative stability of ca. 4.2 V vs. Li/Li+. Previous quenchers are strongly Lewis basic amines with too low oxidative stability. DABCOnium is an ionic liquid, non‐volatile, highly soluble in the electrolyte, stable against superoxide and peroxide, and compatible with lithium metal. The electrochemical stability covers the required range for metal–O2 batteries and greatly reduces 1O2 related parasitic chemistry as demonstrated for the Li–O2 cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号