首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 493 毫秒
1.
The use of a chiral, emitting skeleton for axially chiral enantiomers showing activity in thermally activated delayed fluorescence (TADF) with circularly polarized electroluminescence (CPEL) is proposed. A pair of chiral stable enantiomers, (?)‐(S)‐Cz‐Ax‐CN and (+)‐(R)‐Cz‐Ax‐CN, was designed and synthesized. The enantiomers, both exhibiting intramolecular π‐conjugated charge transfer (CT) and spatial CT, show TADF activities with a small singlet–triplet energy difference (ΔEST) of 0.029 eV and mirror‐image circularly polarized luminescence (CPL) activities with large glum values. Notably, CP‐OLEDs based on the enantiomers feature blue electroluminescence centered at 468 nm with external quantum efficiencies (EQEs) of 12.5 and 12.7 %, and also show intense CPEL with gEL values of ?1.2×10?2 and +1.4×10?2, respectively. These are the first CP‐OLEDs based on TADF‐active enantiomers with efficient blue CPEL.  相似文献   

2.
The use of a chiral, emitting skeleton for axially chiral enantiomers showing activity in thermally activated delayed fluorescence (TADF) with circularly polarized electroluminescence (CPEL) is proposed. A pair of chiral stable enantiomers, (−)-(S)-Cz-Ax-CN and (+)-(R)-Cz-Ax-CN, was designed and synthesized. The enantiomers, both exhibiting intramolecular π-conjugated charge transfer (CT) and spatial CT, show TADF activities with a small singlet–triplet energy difference (ΔEST) of 0.029 eV and mirror-image circularly polarized luminescence (CPL) activities with large glum values. Notably, CP-OLEDs based on the enantiomers feature blue electroluminescence centered at 468 nm with external quantum efficiencies (EQEs) of 12.5 and 12.7 %, and also show intense CPEL with gEL values of −1.2×10−2 and +1.4×10−2, respectively. These are the first CP-OLEDs based on TADF-active enantiomers with efficient blue CPEL.  相似文献   

3.
Epoxides of fatty acids are hydrolyzed by epoxide hydrolases (EHs) into dihydroxy fatty acids which are of particular interest in the mammalian leukotriene pathway. In the present report, the analysis of the configuration of dihydroxy fatty acids via their respective hydroxylactones is described. In addition, the biotransformation of (±)‐erythro‐7,8‐ and ‐3,4‐dihydroxy fatty acids in the yeast Saccharomyces cerevisiae was characterized by GC/EI‐MS analysis. Biotransformation of chemically synthesized (±)‐erythro‐7,8‐dihydroxy(7,8‐2H2)tetradecanoic acid ((±)‐erythro‐ 1 ) in the yeast S. cerevisiae resulted in the formation of 5,6‐dihydroxy(5,6‐2H2)dodecanoic acid ( 6 ), which was lactonized into (5S,6R)‐6‐hydroxy(5,6‐2H2)dodecano‐5‐lactone ((5S,6R)‐ 4 ) with 86% ee and into erythro‐5‐hydroxy(5,6‐2H2)dodecano‐6‐lactone (erythro‐ 8 ). Additionally, the α‐ketols 7‐hydroxy‐8‐oxo(7‐2H1)tetradecanoic acid ( 9a ) and 8‐hydroxy‐7‐oxo(8‐2H1)tetradecanoic acid ( 9b ) were detected as intermediates. Further metabolism of 6 led to 3,4‐dihydroxy(3,4‐2H2)decanoic acid ( 2 ) which was lactonized into 3‐hydroxy(3,4‐2H2)decano‐4‐lactone ( 5 ) with (3R,4S)‐ 5 =88% ee. Chemical synthesis and incubation of (±)‐erythro‐3,4‐dihydroxy(3,4‐2H2)decanoic acid ((±)‐erythro‐ 2 ) in yeast led to (3S,4R)‐ 5 with 10% ee. No decano‐4‐lactone was formed from the precursors 1 or 2 by yeast. The enantiomers (3S,4R)‐ and (3R,4S)‐3,4‐dihydroxy(3‐2H1)nonanoic acid ((3S,4R)‐ and (3R,4S)‐ 3 ) were chemically synthesized and comparably degraded by yeast without formation of nonano‐4‐lactone. The major products of the transformation of (3S,4R)‐ and (3R,4S)‐ 3 were (3S,4R)‐ and (3R,4S)‐3‐hydroxy(3‐2H1)nonano‐4‐lactones ((3S,4R)‐ and (3R,4S)‐ 7 ), respectively. The enantiomers of the hydroxylactones 4, 5 , and 7 were chemically synthesized and their GC‐elution sequence on Lipodex® E chiral phase was determined.  相似文献   

4.
The chemical synthesis of deuterated isomeric 6,7‐dihydroxydodecanoic acid methyl esters 1 and the subsequent metabolism of esters 1 and the corresponding acids 1a in liquid cultures of the yeast Saccharomyces cerevisiae was investigated. Incubation experiments with (6R,7R)‐ or (6S,7S)‐6,7‐dihydroxy(6,7‐2H2)dodecanoic acid methyl ester ((6R,7R)‐ or (6S,7S)‐(6,7‐2H2)‐ 1 , resp.) and (±)‐threo‐ or (±)‐erythro‐6,7‐dihydroxy(6,7‐2H2)dodecanoic acid ((±)‐threo‐ or (±)‐erythro‐(6,7‐2H2)‐ 1a , resp.) elucidated their metabolic pathway in yeast (Tables 1–3). The main products were isomeric 2H‐labeled 5‐hydroxydecano‐4‐lactones 2 . The absolute configuration of the four isomeric lactones 2 was assigned by chemical synthesis via Sharpless asymmetric dihydroxylation and chiral gas chromatography (Lipodex ® E). The enantiomers of threo‐ 2 were separated without derivatization on Lipodex ® E; in contrast, the enantiomers of erythro‐ 2 could be separated only after transformation to their 5‐O‐(trifluoroacetyl) derivatives. Biotransformation of the methyl ester (6R,7R)‐(6,7‐2H2)‐ 1 led to (4R,5R)‐ and (4S,5R)‐(2,5‐2H2)‐ 2 (ratio ca. 4 : 1; Table 2). Estimation of the label content and position of (4S,5R)‐(2,5‐2H2)‐ 2 showed 95% label at C(5), 68% label at C(2), and no 2H at C(4) (Table 2). Therefore, oxidation and subsequent reduction with inversion at C(4) of 4,5‐dihydroxydecanoic acid and transfer of 2H from C(4) to C(2) is postulated. The 5‐hydroxydecano‐4‐lactones 2 are of biochemical importance: during the fermentation of Streptomyces griseus, (4S,5R)‐ 2 , known as L‐factor, occurs temporarily before the antibiotic production, and (?)‐muricatacin (=(4R,5R)‐5‐hydroxy‐heptadecano‐4‐lactone), a homologue of (4R,5R)‐ 2 , is an anticancer agent.  相似文献   

5.
Novel optically active substituted acetylenes HC? CCH2CR1(CO2CH3)NHR2 [(S)‐/(R)‐ 1 : R1 = H, R2 = Boc, (S)‐ 2 : R1 = CH3, R2 = Boc, (S)‐ 3 : R1 = H, R2 = Fmoc, (S)‐ 4 : R1 = CH3, R2 = Fmoc (Boc = tert‐butoxycarbonyl, Fmoc = 9‐fluorenylmethoxycarbonyl)] were synthesized from α‐propargylglycine and α‐propargylalanine, and polymerized with a rhodium catalyst to provide the polymers with number‐average molecular weights of 2400–38,900 in good yields. Polarimetric, circular dichroism (CD), and UV–vis spectroscopic analyses indicated that poly[(S)‐ 1 ], poly[(R)‐ 1 ], and poly[(S)‐ 4 ] formed predominantly one‐handed helical structures both in polar and nonpolar solvents. Poly[(S)‐ 1a ] carrying unprotected carboxy groups was obtained by alkaline hydrolysis of poly[(S)‐ 1 ], and poly[(S)‐ 4b ] carrying unprotected amino groups was obtained by removal of Fmoc groups of poly[(S)‐ 4 ] using piperidine. Poly[(S)‐ 1a ] and poly[(S)‐ 4b ] also exhibited clear CD signals, which were different from those of the precursors, poly[(S)‐ 1 ] and poly[(S)‐ 4 ]. The solution‐state IR measurement revealed the presence of intramolecular hydrogen bonding between the carbamate groups of poly[(S)‐ 1 ] and poly[(S)‐ 1a ]. The plus CD signal of poly[(S)‐ 1a ] turned into minus one on addition of alkali hydroxides and tetrabutylammonium fluoride, accompanying the red‐shift of λmax. The degree of λmax shift became large as the size of cation of the additive. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
New chiral binaphthyl‐based polyarylenes [(S)‐ 3a and (S)‐ 3b ] with appendant Fréchet‐type poly(aryl ether) dendrons (first generation and second generation) were synthesized with Suzuki polycondensation from chiral (S)‐6,6′‐dibromo‐2,2′‐didendron‐substituted 1,1′‐binaphthyl derivatives and p‐phenylene diboronic acid. The polymers were studied with circular dichroism, fluorescence, and ultraviolet–visible spectra. Laser light scattering measurements of (S)‐ 3a and (S)‐ 3b showed that their weight‐average molecular weights were 2.39 × 105 and 1.09 × 104, respectively. The specific optical rotation [α]D was ?59.6 for (S)‐ 3a and ?62.7 for (S)‐ 3b . These dendronized conjugated polymers exhibited good thermal stability. The glass‐transition temperatures and the initial decomposition temperatures were 187.5 and 265.3 °C for (S)‐ 3a and 173.8 and 308.9 °C for (S)‐ 3b , respectively. (S)‐ 3a and (S)‐ 3b had high fluorescence quantum efficiencies, 87 and 91%, respectively, in tetrahydrofuran. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1167–1172, 2002  相似文献   

7.
Biotransformation of (±)‐threo‐7,8‐dihydroxy(7,8‐2H2)tetradecanoic acids (threo‐(7,8‐2H2)‐ 3 ) in Saccharomyces cerevisiae afforded 5,6‐dihydroxy(5,6‐2H2)dodecanoic acids (threo‐(5,6‐2H2)‐ 4 ), which were converted to (5S,6S)‐6‐hydroxy(5,6‐2H2)dodecano‐5‐lactone ((5S,6S)‐(5,6‐2H2)‐ 7 ) with 80% e.e. and (5S,6S)‐5‐hydroxy(5,6‐2H2)dodecano‐6‐lactone ((5S,6S)‐5,6‐2H2)‐ 8 ). Further β‐oxidation of threo‐(5,6‐2H2)‐ 4 yielded 3,4‐dihydroxy(3,4‐2H2)decanoic acids (threo‐(3,4‐2H2)‐ 5 ), which were converted to (3R,4R)‐3‐hydroxy(3,4‐2H2)decano‐4‐lactone ((3R,4R)‐ 9 ) with 44% e.e. and converted to 2H‐labeled decano‐4‐lactones ((4R)‐(3‐2H1)‐ and (4R)‐(2,3‐2H2)‐ 6 ) with 96% e.e. These results were confirmed by experiments in which (±)‐threo‐3,4‐dihydroxy(3,4‐2H2)decanoic acids (threo‐(3,4‐2H2)‐ 5 ) were incubated with yeast. From incubations of methyl (5S,6S)‐ and (5R,6R)‐5,6‐dihydroxy(5,6‐2H2)dodecanoates ((5S,6S)‐ and (5R,6R)‐(5,6‐2H2)‐ 4a ), the (5S,6S)‐enantiomer was identified as the precursor of (4R)‐(3‐2H1)‐ and (2,3‐2H2)‐ 6 ). Therefore, (4R)‐ 6 is synthesized from (3S,4S)‐ 5 by an oxidation/keto acid reduction pathway involving hydrogen transfer from C(4) to C(2). In an analogous experiment, methyl (9S,10S)‐9,10‐dihydroxyoctadecanoate ((9S,10S)‐ 10a ) was metabolized to (3S,4S)‐3,4‐dihydroxydodecanoic acid ((3S,4S)‐ 15 ) and converted to (4R)‐dodecano‐4‐lactone ((4R)‐ 18 ).  相似文献   

8.
The two pyrrolidinylidenesulfamido‐modified β‐cyclodextrins (β‐CDs) 3 and 4 were prepared and studied for chiral discrimination of the enantiomers (R)‐ and (S)‐ 1 of zolmitriptan. The pyrrolidinylidenesulfamido spacer improved the chiral discrimination and binding abilities of these modified cyclodextrins. The hosts 3 and 4 showed higher selectivity for (S)‐ 1 . The association constants (Table) and enantioselectivity factors were calculated for the complexes of (R)‐ and (S)‐ 1 with the β‐CDs 2 – 4 . The formation of host?guest complexes was confirmed by 1H‐NMR studies.  相似文献   

9.
The absolute configuration of the naturally occurring isomers of 6β‐benzoyloxy‐3α‐tropanol ( 1 ) has been established by the combined use of chiral high‐performance liquid chromatography with electronic circular dichroism detection and optical rotation detection. For this purpose (±)‐ 1 , prepared in two steps from racemic 6‐hydroxytropinone ( 4 ), was subjected to chiral high‐performance liquid chromatography with electronic circular dichroism and optical rotation detection allowing the online measurement of both chiroptical properties for each enantiomer, which in turn were compared with the corresponding values obtained from density functional theory calculations. In an independent approach, preparative high‐performance liquid chromatography separation using an automatic fraction collector, yielded an enantiopure sample of OR(+)‐ 1 whose vibrational circular dichroism spectrum allowed its absolute configuration assignment when the bands in the 1100–950 cm‐1 region were compared with those of the enantiomers of esters derived from 3α,6β‐tropanediol. In addition, an enantiomerically enriched sample of 4 , instead of OR(±)‐ 4 , was used for the same transformation sequence, whose high‐performance liquid chromatography follow‐up allowed their spectroscopic correlation. All evidences lead to the OR(+)‐(1S,3R,5S,6R) and OR(?)‐(1R,3S,5R,6S) absolute configurations, from where it follows that samples of 1 isolated from Knightia strobilina and Erythroxylum zambesiacum have the OR(+)‐(1S,3R,5S,6R) absolute configuration, while the sample obtained from E. rotundifolium has the OR(?)‐(1R,3S,5R,6S) absolute configuration.  相似文献   

10.
Starting from simple aromatic aldehydes and acetylfuran, (E)‐1‐(furan‐2‐yl)‐3‐arylprop‐2‐en‐1‐ones ( 2 ) were synthesized in high yields. Cyclopropanation of the C?C bond with trimethylsulfoxonium iodide (Me3SO+I?) furnished (furan‐2‐yl)(2‐arylcyclopropyl)methanones 3 in 90–97% yields. Selective conversion of cyclopropyl ketones to their (E)‐ and (Z)‐oxime ethers 5 and oxazaborolidine‐catalyzed stereoselective reduction of the C?N bond followed by separation of the formed diastereoisomers, furnished (2‐arylcyclopropyl)(furan‐2‐yl)methanamines 6 in optically pure form and high yield. Oxidation of the furan ring of (S,S,S)‐, (S,R,R)‐, (R,S,S)‐, and (R,R,R)‐ 6a afforded the four stereoisomers of α‐(2‐phenylcyclopropyl) glycine ( 1a ).  相似文献   

11.
The clinical formulation of primaquine (PQ) is a mixture of (−)‐(R)‐ and (+)‐(S)‐ primaquine enantiomers which may show different pharmacokinetic and pharmacodynamic properties. To assess the efficacy and toxicity of primaquine enantiomers, a method using LC‐MSD‐TOF has been developed. The enantiomers were well separated using a Chiralcel OD column (250 × 4.6 mm, 10 µm) with a linear gradient of mobile phase consisting of acetonitrile (0.1% formic acid) and aqueous ammonium formate (20 mm ; 0.1% formic acid) adjusted to pH 5.9 at a flow rate of 0.7 mL/min. The method was validated for linearity, precision, accuracy and limits of detection and quantification. The calibration curves were linear with all correlation coefficients being >0.999. The average recoveries of (−)‐(R)‐ and (+)‐(S)‐primaquine and (−)‐(R)‐ and (+)‐(S)‐carboxyprimaquine were 88 and 92%, respectively, in spiked human plasma and 89 and 93% respectively in spiked mouse plasma samples. The RSD of (−)‐(R)‐ and (+)‐(S)‐primaquine and (−)‐(R)‐ and (+)‐(S)‐carboxyprimaquine were 2.15, 1.74, 1.73 and 2.31, respectively, in spiked human plasma and 2.21, 1.09, 1.95 and 1.17% in spiked mouse plasma, respectively. The intra‐day and inter‐day precisions expressed as RSD were lower than 10% in all analyzed quality control levels. The method as reported is suitable for study of the pharmacokinetic and pharmacodynamic properties of the enantiomers of primaquine. The method was successfully applied to study plasma pharmacokinetic profile of enantiomers of primaquine and carboxyprimaquine in mice administered with primaquine in racemic form. The analytical method was found to be linear, accurate, precise and specific. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Four novel crystalline stereocomplexed polymers are formed by mixing isotactic (R)‐ and (S)‐polycarbonates in 1:1 mass ratio. They show the enhanced thermal stability and new crystalline behavior, significantly distinct from the component enantiomer. Two stereocomplexed CO2‐based polycarbonates from meso‐3,4‐epoxytetrahydrofuran and 4,4‐dimethyl‐3,5,8‐trioxabicyclo[5.1.0]octane have high melting temperatures of up to 300 °C, about 30 °C higher than the individual enantiomers. Isotactic (R)‐ or (S)‐poly(cyclopentene carbonate) and poly(cis‐2,3‐butene carbonate) are typical amorphous polymeric materials, however, upon mixing both enantiomers together, a strong interlocked interaction between polymer chains of opposite configuration occurs, affording the crystalline stereocomplexes with melting temperatures of about 200 °C and 180 °C, respectively. A DFT study suggests that the driving force forming the stereocomplex is the hydrogen‐bonding between carbonate units of the opposite enantiomers.  相似文献   

13.
Chiral cyclic α,α‐disubstituted amino acids, (3S,4S)‐ and (3R,4R)‐1‐amino‐3,4‐(dialkoxy)cyclopentanecarboxylic acids ((S,S)‐ and (R,R)‐Ac5cdOR; R: methyl, methoxymethyl), were synthesized from dimethyl L ‐(+)‐ or D ‐(?)‐tartrate, and their homochiral homoligomers were prepared by solution‐phase methods. The preferred secondary structure of the (S,S)‐Ac5cdOMe hexapeptide was a left‐handed (M) 310 helix, whereas those of the (S,S)‐Ac5cdOMe octa‐ and decapeptides were left‐handed (M) α helices, both in solution and in the crystal state. The octa‐ and decapeptides can be well dissolved in pure water and are more α helical in water than in 2,2,2‐trifluoroethanol solution. The left‐handed (M) helices of the (S,S)‐Ac5cdOMe homochiral homopeptides were exclusively controlled by the side‐chain chiral centers, because the cyclic amino acid (S,S)‐Ac5cdOMe does not have an α‐carbon chiral center but has side‐chain γ‐carbon chiral centers.  相似文献   

14.
To study the conversion from a meso form to a racemic form of tetrahydrofurantetracarboxylic acid (H4L), seven novel coordination polymers were synthesized by the hydrothermal reaction of Zn(NO3)2 ? 6 H2O with (2S,3S,4R,5R)‐H4L in the presence of 1,10‐phenanthroline (phen), 2,2′‐bipyridine (2,2′‐bpy), or 4,4′‐bipyridine (4,4′‐bpy): [Zn2{(2S,3S,4R,5R)‐L}(phen)2(H2O)] ? 2 H2O ( 1 ), [Zn4{(2S,3R,4R,5R)‐L}{(2S,3S,4S,5R)‐L}(phen)2(H2O)2] ( 2 ), [Zn2{(2S,3S,4R,5R)‐L}(H2O)2] ? H2O ( 3 ), [Zn4{(2S,3R,4R,5R)‐L}{(2S,3S,4S,5R)‐L} (2,2′‐bpy)2(H2O)2] ? 2 H2O ( 4 ), [Zn2 {(2S,3S,4R,5R)‐L}(2,2′‐bpy)(H2O)] ( 5 ), [Zn4{(2S,3R,4R,5R)‐L}{(2S,3S,4S,5R)‐L} (4,4′‐bpy)2(H2O)2] ( 6 ), and [Zn2 {(2S,3S,4R,5R)‐L}(4,4′‐bpy)(H2O)] ? 2 H2O ( 7 ). These complexes were obtained by control of the pH values of reaction mixtures, with an initial of pH 2.0 for 1 , 2.5 for 2 , 4 , and 6 , and 4.5 for 3 , 5 , and 7 , respectively. The expected configuration conversion has been successfully realized during the formation of 2 , 4 , and 6 , and the enantiomers of L, (2S,3R,4R,5R)‐L and (2S,3S,4S,5R)‐L, are trapped in them, whereas L ligands in the other four complexes retain the original meso form, which indicates that such a conversion is possibly pH controlled. Acid‐catalyzed enol–keto tautomerism has been introduced to explain the mechanism of this conversion. Complex 1 features a simple 1D metal–L chain that is extended into a 3D supramolecular structure by π–π packing interactions between phen ligands and hydrogen bonds. Complex 2 has 2D racemic layers that consist of centrosymmetric bimetallic units, and a final 3D supramolecular framework is formed by the interlinking of these layers through π–π packing interactions of phen. Complex 3 is a 3D metal–organic framework (MOF) involving meso‐L ligands, which can be regarded as (4,6)‐connected nets with vertex symbol (45.6)(47.68). Complexes 4 and 5 contain 2D racemic layers and (6,3)‐honeycomb layers, respectively, both of which are combined into 3D supramolecular structures through π–π packing interactions of 2,2′‐bpy. The structure of complex 6 is a 2D network formed by 4,4′‐bpy bridging 1D tubes, which consist of metal atoms and enantiomers of L. These layers are connected through hydrogen bonds to give the final 3D porous supramolecular framework of 6 . Complex 7 is a 3D MOF with novel (3,4,5)‐connected (63)(42.64)(42.66.82) topology. The thermal stability of these compounds was also investigated.  相似文献   

15.
The peculiar and highly diffusive odor signal of flowering clary‐sage plants (Salvia sclarea L.) was identified to derive from trace amounts of 1‐methoxyhexane‐3‐thiol ( 1 ) by mass‐spectrometry analysis and confirmed by comparison with synthetic racemic thiol (±)‐ 1 . The enantiomers (S)‐ and (R)‐ 1 were prepared by enantioselective synthesis, and the absolute configuration of (S)‐ 1 was fully corroborated by X‐ray‐diffraction analysis of the crystalline thioester (1′S,1S)‐ 2 . Compound (S)‐ 1 is one of the most powerful odorants known, with a detection threshold of 0.04⋅10−3 ng/l air, and is, with its herbaceous‐green, alliaceous, and perspiration profile, key to the fragrance of clary‐sage flowers and of the freshly distilled essential oil. As a consequence of its unique odor, 1 was also suspected to be part of the volatiles of a Ruta species where it was subsequently identified together with its homologue, 1‐methoxyheptane‐3‐thiol ( 3 ), 1‐methoxy‐4‐methylpentane‐3‐thiol ( 4 ), and the known 4‐methoxy‐2‐methylbutane‐2‐thiol ( 5 ). The syntheses of (±)‐ 3 and (±)‐ 4 as well as of the enantiomer (R)‐ 4 are described. In both natural fractions, the ratio (S)‐ 1 /(R)‐ 1 was slightly in favor of the (S)‐enantiomer. Natural 4 has (R)‐configuration.  相似文献   

16.
2,3‐bis(diphenylphosphino)butane enantiomers (chiraphos, L) used as chiral auxiliaries results in the preferential formation of an unprecedented Au24 framework with inherent chirality. The crystal structure of [Au24L6Cl4]2+ ( 1 ) has a square antiprism‐like octagold core twinned by two helicene‐like hexagold motifs, where the inherent chirality is associated with the helical arrangement. The clusters carrying (R,R)‐ and (S,S)‐ diphosphines had right‐ and left‐handed strands, respectively. Circular dichroism spectra showed peaks in the visible to near‐IR region, some of which did not coincide with absorption bands, suggesting the enantiomeric Au24 frameworks possess unique chiroptical properties. The Au24 frameworks were thermally robust, which could be attributed to the superatomic concept (18 e? system) and the steric constraint effects of the bridging ligand units.  相似文献   

17.
Two pairs of enantiomeric compounds with formulas (S)‐ or (R)‐Co3(ppap)2(4,4′‐bpy)2(H2O)2 ? 4 H2O [(S)‐ 1 or (R)‐ 1 ], (S)‐ or (R)‐Co3(ppap)2(4,4′‐bpy)2(H2O)2 ? 3 H2O [(S)‐ or (R)‐ 2 ), and related racemic compound Co3(ppap)2(4,4′‐bpy)2(H2O)2 ? 4 H2O (rac‐ 3 ; 4,4′‐bpy=4,4′‐bipyridine, H3ppap=3‐phenyl‐2‐[(phosphonomethyl)amino]propanoic acid) are reported. Compounds 1 and rac‐ 3 show identical three‐dimensional framework structures, whereas compounds 2 have two‐dimensional layer structures. Compounds 1 and 2 are catenation isomers, formation of which is controlled solely by the pH of the reaction mixtures, whereas the formation of isomeric compounds 1 and rac‐ 3 is controlled purely by the chirality of the phosphonate ligand. The magnetic properties of fully dehydrated (S)‐ 1 , (S)‐ 2 , and rac‐ 3 are highly dependent on both structure and chirality.  相似文献   

18.
In our efforts of finding new specific contrast agents of higher relaxivity and selectivity, we have prepared the two new benzyl‐functionalized DTPA (‘diethylenetriamine pentaacetate’) gadolinium complexes (S)‐ 3 and (R,S)‐ 4 , and compared their properties with those of the known regioisomers (S)‐ 2 and (S)‐ 1 . The theoretical fitting of the reduced transverse relaxation rates of the 17O‐nucleus of H2O gave values for the water‐residence time (τM) of 86–143 ns at 310 K, values that are not limiting the proton relaxivity at body temperature. 1H‐NMRD (nuclear magnetic‐relaxation dispersion) Profiles showed that the relaxivity of 1 – 4 (r1=4.3–5.1 s?1 mM ?1 at 20 MHz and 310 K) is higher than for the Gd? DTPA parent compound 5 . Transmetallation assessment demonstrated that all substituted compounds, except for (S)‐ 2 , are more stable than 5 . The highest stability towards Zn2+‐induced transmetallation was achieved with complexes 3, 1 , and 4 (in decreasing order). Apparently, the steric hindrance of the benzyl substituents in positions 5, 4, and 2, respectively, favorably reduces the accessibility of Zn ions. From a synthetic point of view, 4‐substituted DTPA complexes of type 1 are more readily accessible than 5‐substituted compounds of type 3 . Therefore, the former seem to be superior for linking substituted DTPA complexes to macromolecules or specific vectors.  相似文献   

19.
Inexpensive acryloyl chloride was converted in 91% overall yield to two derivatives of β‐alanine, (R,R,R)‐ 6 and (R,R,S)‐ 6 , containing two chiral auxiliaries. C‐Alkylation of (R,R,R)‐ and (R,R,S)‐ 6 via a dianion derivative, was performed by direct metallation with 2.2 equiv. of lithium hexamethyldisilazane (LHMDS) in THF at ?78°. C‐Alkylation of (R,R,S)‐ 6 ‐Li2 (‘matched' pair of chiral auxiliaries) afforded the mono‐alkylated products 8 – 11 in 29–96% yield and 54–95% stereoselectivity. Employment of LiCl as an additive generally increased stereoselectivities, whereas the effect of HMPA as a cosolvent was erratic. Chemical correlation of the major diastereoisomer from the alkylation reactions with (S)‐α‐alkyl‐β‐alanine ( 12 – 15 ) showed that addition of the electrophile preferentially takes place on the enolate's Si‐face. This conclusion is also supported by molecular‐modeling studies (ab initio HF/3‐21G), which indicate that the lowest‐energy conformation for (R,R,S)‐ 6 ‐Li2 presents the more sterically hindered Re‐face of the enolate. The theoretical studies also predict a determining role for N? Li? O chelation in (R,R,S)‐ 6 ‐Li2, giving rise to an interesting ‘ion‐triplet' configuration for the dilithium dianion.  相似文献   

20.
The endeavor to develop high-performance narrowband blue organic light-emitting diodes (OLEDs) with low efficiency roll-off represents an attractive challenge. Herein, we introduce a hetero-acceptor design strategy centered around the heptagonal diimide (BPI) building block to create an efficient thermally activated delayed fluorescence (TADF) sensitizer. The alignment of a twisted BPI unit and a planar diphenyltriazine (TRZ) fragment imparts remarkable exciton dynamic properties to 26tCz-TRZBPI, including a fast radiative decay rate (kR) of 1.0×107 s−1 and a swift reverse intersystem crossing rate (kRISC) of 1.8×106 s−1, complemented by a slow non-radiative decay rate (kNR) of 6.0×103 s−1. Consequently, 26tCz-TRZBPI facilitates the fabrication of high-performance narrowband pure-blue TADF-sensitized fluorescence OLEDs (TSF-OLEDs) with a maximum external quantum efficiency (EQEmax) of 24.3 % and low efficiency roll-off even at a high brightness level of 10000 cd m−2 (EQE10000: 16.8 %). This showcases a record-breaking external quantum efficiency at a high luminance level of 10000 cd m−2 for narrowband blue TSF-OLEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号