首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The reaction of precursors containing both nitrogen and oxygen atoms with NiII under 500 °C can generate a N/O mixing coordinated Ni‐N3O single‐atom catalyst (SAC) in which the oxygen atom can be gradually removed under high temperature due to the weaker Ni?O interaction, resulting in a vacancy‐defect Ni‐N3‐V SAC at Ni site under 800 °C. For the reaction of NiII with the precursor simply containing nitrogen atoms, only a no‐vacancy‐defect Ni‐N4 SAC was obtained. Experimental and DFT calculations reveal that the presence of a vacancy‐defect in Ni‐N3‐V SAC can dramatically boost the electrocatalytic activity for CO2 reduction, with extremely high CO2 reduction current density of 65 mA cm?2 and high Faradaic efficiency over 90 % at ?0.9 V vs. RHE, as well as a record high turnover frequency of 1.35×105 h?1, much higher than those of Ni‐N4 SAC, and being one of the best reported electrocatalysts for CO2‐to‐CO conversion to date.  相似文献   

2.
We report the chemo‐ and regioselective hydrogenolysis of the C?O bonds in di‐ortho‐substituted diaryl ethers under the catalysis of a supported nickel catalyst. The catalyst comprises heterogeneous nickel particles supported on activated carbon and furnishes arenes and phenols in high yields without hydrogenation. The high thermal stability of the embedded metal particles allows C?O bond cleavage to occur in highly substituted diaryl ether units akin to those in lignin. Preliminary mechanistic experiments show that this catalyst undergoes sintering less readily than previously reported catalyst particles that form from a solution of [Ni(cod)2].  相似文献   

3.
Four NHC [CNN] pincer nickel (II) complexes, [iPrCNN (CH2)4‐Ni‐Br] ( 5a ), [nBuCNN (CH2)4‐Ni‐Br] ( 5b ), [iPrCNN (Me)2‐Ni‐Br] ( 6a ) and [nBuCNN (Me)2‐Ni‐Br] ( 6b ), bearing unsymmetrical [C (carbene)N (amino)N (amine)] ligands were synthesized by the reactions of [CNN] pincer ligand precursors 4 with Ni (DME)Cl2 in the presence of Et3N. Complexes 5a and 5b are new and were completely characterized. The transfer hydrogenation of ketones catalyzed by the four pincer nickel complexes were explored. Complexes 5a and 6a have better catalytic activity than 5b and 6b . With a combination of NaOtBu/iPrOH/80 °C and 2% catalyst loading of 5a , 77–98% yields of aromatic alcohols could be obtained.  相似文献   

4.
A comparative study is performed of the catalytic activity of nanosized nickel deposited on detonation synthesis nanodiamond (DND) and coal (CSUG) produced by burning sugar and crystalline quartz in the hydrogenation of acetylene. Nanosized nickel is obtained through the thermal decomposition of nickel formate under a dynamic vacuum. The catalysts are studied by means of scanning electron and transmission electron microscopy, X-ray fluorescence, IR-spectroscopy, X-ray diffraction, and pulse microcatalytic method. It is shown that Ni/DND is an active catalyst of acetylene hydrogenation, considerably surpassing Ni/quartz and Ni/CSUG. The apparent activation energy of the hydrogenation of acetylene is calculated, and the region of the reaction are determined for all catalysts. It is found that the influence of the structure and nature of a functional coating of nanodiamond on the catalytic activity of Ni/DND deposited catalyst in the hydrogenation of acetylene. The ability of Ni/DND to hold active hydrogen is detected.  相似文献   

5.
The preparation of a new nickel(0)/Al2O3 catalyst for hydrogenation reactions is described. The nickel(0)/Al2O3 catalysts were prepared by impregnation of alumina with a solution of a nickel(II) salt. After drying, the nickel(II) salt was reduced under mild conditions into nickel(0) using t‐BuONa‐activated sodium hydride in tetrahydrofuran at 65 °C. The nickel(0)/Al2O3 catalysts obtained were characterized by transmission electron microscopy and energy‐dispersive X‐ray spectroscopy. The supported catalysts were successfully used in solution‐phase hydrogenation of double and triple bonds. Although the activity of the nickel(0)/Al2O3 is comparable to non‐supported nickel(0) reagents, it has the advantage of being reusable more than ten times with only a slight decrease of reactivity. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
采用浸渍法制备了Ni/HZSM-5双功能催化剂,考察了焙烧温度对催化剂结构及其催化山梨醇水相加氢合成C5~C6烷烃性能的影响.结果表明,在金属中心和酸性载体的协同作用下,通过山梨醇中C-O键加氢和异构化高选择性合成了C5~C6烷烃.经500°C焙烧的Ni/HZSM-5催化剂上山梨醇水相加氢的活性最高,山梨醇转化率为62.0%,戊烷和己烷的总选择性为76.4%,其中异己烷选择性达45.4%.对催化剂进行N2物理吸附、X射线衍射、NH3程序升温脱附和H2程序升温还原等表征后发现,经500°C焙烧催化剂的有效比表面积和孔体积均明显增大,HZSM-5负载的硝酸镍分解成较小晶粒的NiO,表面酸量适中,且Ni物种与载体相互作用较强,较易被H2还原,Ni还原度达100%.这是其催化活性最高的原因.  相似文献   

7.
The dissolution of nickel metal in nitric acid in the presence of the dichromate anion as the oxidizer is reported. The formation of Ni(II) and Cr(III) nitrates takes place in two steps with the intermediate formation of nitrous acid. A new method to synthesize the nickel-chromium oxide catalyst from nickel and chromium nitrate solutions is suggested, in which the solutions are obtained by an environmentally friendly technology from nickel metal, chromium(VI) oxide, and nitric acid. The catalyst is highly active and selective in benzene hydrogenation and in CO preferential hydrogenation in the presence of CO2.  相似文献   

8.
Ni‐loaded pure siliceous and aluminosilicate MCM‐41 (Ni/MCM‐41) and nickel‐loaded silica (15Ni/SiO2) were synthesized via wet impregnation and were characterized by various techniques. The H2 consumption in the TPR analysis was found to be proportional to the Ni amount in the calcined samples. After reduction the average Ni particle sizes of 15Ni/MCM‐41 and 15Ni/SiO2 were 9–12 and 16 nm, respectively, by means of XRD and TEM measurements. All catalysts owned weak and intermediate Lewis acid sites that increased slightly with increasing the Ni amount and the Al content. In the liquid phase hydrogenation of t,t,c‐1,5,9‐cyclododecatriene over Ni/MCM‐41, the catalytic activity was parallel to the Ni content and enhanced slightly with the acid amount of the catalysts. Consequently, it was proposed that the Ni metallic sites contributed the major effect to the catalytic activity while the Lewis acid sites promoted a small but significant influence on the catalytic performance. It is noteworthy that all 15Ni/MCM‐41 catalysts exhibited remarkably higher activity than that of the conventional 15Ni/SiO2 catalyst.  相似文献   

9.
A series of novel α‐diamine nickel complexes, (ArNH‐C(Me)‐(Me)C‐NHAr)NiBr2, 1 : Ar=2,6‐diisopropylphenyl, 2 : Ar=2,6‐dimethylphenyl, 3 : Ar=phenyl), have been synthesized and characterized. X‐ray crystallographic analysis showed that the coordination geometry of the α‐diamine nickel complexes is markedly different from conventional α‐diimine nickel complexes, and that the chelate ring (N‐C‐C‐N‐Ni) of the α‐diamine nickel complex is significantly distorted. The α‐diamine nickel catalysts also display different steric effects on ethylene polymerization in comparison to the α‐diimine nickel catalyst. Increasing the steric hindrance of the α‐diamine ligand by substitution of the o‐methyl groups with o‐isopropyl groups leads to decreased polymerization activity and molecular weight; however, catalyst thermal stability is significantly enhanced. Living polymerizations of ethylene can be successfully achieved using 1 /Et2AlCl at 35 °C or 2 /Et2AlCl at 0 °C. The bulky α‐diamine nickel catalyst 1 with isopropyl substituents can additionally be used to control the branching topology of the obtained polyethylene at the same level of branching density by tuning the reaction temperature and ethylene pressure.  相似文献   

10.
Ni‐W/HZSM5‐HMS catalysts were evaluated for the benzene hydrogenation reaction at 130–190°C. To study the catalyst characterization, X‐ray diffraction, X‐ray fluorescence, Fourier transform infrared, UV–vis, diffuse reflectance spectra, temperature‐programmed desorption of NH3, FT‐IR of adsorbed pyridine measurements (Py‐IR), H2 chemisorption, nitrogen adsorption–desorption, and TGA techniques were used. Kinetics of benzene hydrogenation was investigated under various hydrogen and benzene pressures, and the effect of reaction conditions on catalytic performance was studied. The results showed that bimetallic catalysts have better ability than a monometallic catalyst (Ni/HZSM5‐HMS) for this reaction, such as maximum benzene conversion (100%), minimum toluene conversion (1.76–40%), very low converted xylene, benzene selectivity (100%), good catalytic stability against coke deposition, and appropriate kinetic parameters.  相似文献   

11.
An efficient nickel‐catalyzed asymmetric hydrogenation of NtBu ‐ sulfonyl imines was developed with excellent yields and enantioselectivities using (R,R)‐QuinoxP* as a chiral ligand. The use of a much lower catalyst loading (0.0095 mol %, S/C=10500) represents the highest catalytic activity for the Ni‐catalyzed asymmetric hydrogenations reported so far. Mechanistic studies suggest that a coordination equilibrium exists between the nickel salt and its complex, and that excess nickel salt promotes the formation of the active Ni‐complex, and therefore improved the efficiency of the hydrogenation. The catalytic cycle was also investigated by calculations to determine the origin of the enantioselectivity. An extensive network of numerous weak attractive interactions was found to exist between the catalyst and substrate in the transition state and may also contribute to the high catalytic activity.  相似文献   

12.
分别用机械研磨无溶剂法、添加柠檬酸无溶剂法制备了 Ni/MCM-41催化剂,对所制催化剂进行了分析表征,探究其萘加氢反应性能并与常规浸渍法进行了对比.与常规浸渍法相比,机械研磨无溶剂法所制催化剂的物理性质相近,金属镍分散度和萘加氢性能略有提高;添加柠檬酸无溶剂法则显著提升了催化剂的分散度和萘加氢性能,金属镍分散度由6....  相似文献   

13.
以Al2O3为载体,采用等体积浸渍法制备了一系列Ni-Cu/Al2O3催化剂,用于顺酐液相加氢反应,并结合低温N2物理吸-脱附、H2程序升温还原、H2程序升温脱附、X射线衍射、CO程序升温表面反应等表征结果,详细考察了催化剂中Cu含量对其催化性能的影响.结果表明,Cu的引入提高了活性组分Ni的分散度,促进了催化剂上C=C的加氢活性;同时,由于Ni-Cu双金属间的相互作用,明显抑制了催化剂表面C=O的加氢.当Cu含量为7%时,催化剂上顺酐加氢定向合成丁二酸酐的活性最高.在210oC,H2压力5.0MPa的条件下反应40min时,顺酐转化率与丁二酸酐选择性均达100%.  相似文献   

14.
A new synthetic protocol for catalysing CO2 hydrogenation to formic acid under mild conditions is reported, and the CO2 hydrogenation is efficiently achieved by dcpe‐rhodium‐nitrosyl catalyst precursors, Rh(NO)(dcpe) (1) (dcpe = 1,2‐dicyclohexylphosphinoethane) and Rh(III)(NO)(dcpe)Cl2 (2). The catalytic activity of 1 is noteworthy for being able to proceed in the absence of protic conditions. Compound 2 is characterized by NMR, IR and X‐ray crystallography. In particular, 2 is observed to bear a bent NO ligand with a Rh–N–O angle of 115.7(3)°, representing one of the smallest M–N–O angles known. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
以天然层状黏土蒙脱石(MMT)为前体,通过液相沉积-沉淀将镍物种引入水溶液中剥离为MMT纳米片表面的简易方法制得Ni/MMT纳米片。该Ni/MMT纳米片由于是二维(2D)结构,利于芳烃及其加氢产物的传质扩散,相比Ni/SBA-15和Ni/γ-Al2O3催化剂,具有更为高效的芳烃加氢性能,且在镍负载量高达18.5%时,其四氢萘加氢的转化频率(TOF)达到最高值。  相似文献   

16.
Ni‐CeO2 is a highly efficient, stable and non‐expensive catalyst for methane dry reforming at relative low temperatures (700 K). The active phase of the catalyst consists of small nanoparticles of nickel dispersed on partially reduced ceria. Experiments of ambient pressure XPS indicate that methane dissociates on Ni/CeO2 at temperatures as low as 300 K, generating CHx and COx species on the surface of the catalyst. Strong metal–support interactions activate Ni for the dissociation of methane. The results of density‐functional calculations show a drop in the effective barrier for methane activation from 0.9 eV on Ni(111) to only 0.15 eV on Ni/CeO2?x(111). At 700 K, under methane dry reforming conditions, no signals for adsorbed CHx or C species are detected in the C 1s XPS region. The reforming of methane proceeds in a clean and efficient way.  相似文献   

17.
Cinchonidine (CD) adsorbed onto a platinum metal catalyst leads to rate acceleration and induces strong stereocontrol in the asymmetric hydrogenation of trifluoroacetophenone. Addition of catalytic amounts of trifluoroacetic acid (TFA) significantly enhances the enantiomeric excess from 50 to 92 %. The origin of the enantioselectivity bestowed by co‐adsorbed CD and TFA is investigated by using in situ attenuated total reflection infrared spectroscopy and modulation excitation spectroscopy. Molecular interactions between the chiral modifier (CD), acid additive (TFA) and the trifluoro‐activated substrate at the solid–liquid interface are elucidated under conditions relevant to catalytic hydrogenations, that is, on a technical Pt/Al2O3 catalyst in the presence of H2 and solvent. Monitoring of the unmodified and modified surface during the hydrogenation provides an insight into the phenomenon of rate enhancement and the crucial interactions of CD with the ketone, corresponding product alcohol, and TFA. Comparison of the diastereomeric interactions occurring on the modified surface and in the liquid solution shows a striking difference for the chiral preferences of CD. The spectroscopic data, in combination with calculations of molecular structures and energies, sheds light on the reaction mechanism of the heterogeneous asymmetric hydrogenation of trifluoromethyl ketones and the involvement of TFA in the diastereomeric intermediate surface complex: the quinuclidine N atom of the adsorbed CD forms an N?H?O‐type hydrogen‐bonding interaction not only with the trifluoro‐activated ketone but also with the corresponding alcohol and the acid additive. Strong evidence is provided that it is a monodentate acid/base adduct in which the carboxylate of TFA resides at the quinuclidine N‐atom of CD, which imparts a better stereochemical control.  相似文献   

18.
以MIL-53(Al)、MIL-96(Al)和MIL-120(Al) (MIL: Material Institute of Lavorisier)三种金属有机骨架材料为载体, 采用浸渍法制备了负载廉价金属镍纳米颗粒的催化剂. 将其用于催化硝基苯加氢合成苯胺反应, 发现以MIL-53(Al)为载体制得的催化剂表现出优异的催化性能. 采用不同的镍前驱体, 如硝酸镍、醋酸镍、乙二胺合镍, 制备了一系列Ni/MIL-53(Al)催化剂. 通过X射线衍射、傅里叶变换红外光谱、电感耦合等离子体、N2物理吸附、H2程序升温还原、透射电镜等技术对其进行了表征, 研究了镍前驱体对金属-载体相互作用、镍颗粒尺寸以及分散程度的影响.结果表明:以乙二胺合镍为镍前驱体制得的催化剂具有金属-载体相互作用适中、镍纳米颗粒更小(4-5 nm)和分布更均匀的特点, 在硝基苯加氢反应中表现出优异的催化性能, 硝基苯转化率达到100%.回收重复使用5次后, 此催化剂仍保持催化活性,硝基苯转化率达92%.  相似文献   

19.
The reaction of precursors containing both nitrogen and oxygen atoms with NiII under 500 °C can generate a N/O mixing coordinated Ni-N3O single-atom catalyst (SAC) in which the oxygen atom can be gradually removed under high temperature due to the weaker Ni−O interaction, resulting in a vacancy-defect Ni-N3-V SAC at Ni site under 800 °C. For the reaction of NiII with the precursor simply containing nitrogen atoms, only a no-vacancy-defect Ni-N4 SAC was obtained. Experimental and DFT calculations reveal that the presence of a vacancy-defect in Ni-N3-V SAC can dramatically boost the electrocatalytic activity for CO2 reduction, with extremely high CO2 reduction current density of 65 mA cm−2 and high Faradaic efficiency over 90 % at −0.9 V vs. RHE, as well as a record high turnover frequency of 1.35×105 h−1, much higher than those of Ni-N4 SAC, and being one of the best reported electrocatalysts for CO2-to-CO conversion to date.  相似文献   

20.
The nickel‐promoted Cu‐containing catalysts (CuxNiy‐MgAlO) for furfural (FFR) hydrogenation were prepared from the hydrotalcite‐like precursors, and characterized by X‐ray powder diffraction, inductively‐coupled plasma atomic emission spectroscopy, N2 adsorption‐desorption, UV‐Vis diffuse reflectance spectra and temperature‐programmed reduction with H2 in the present work. The obtained catalysts were observed to exhibit a better catalytic property than the corresponding Cu‐MgAlO or Ni‐MgAlO samples in FFR hydrogenation, and the CuNi‐MgAlO catalyst with the actual Cu and Ni loadings of 12.5 wt% and 4.5 wt%, respectively, could give the highest FFR conversion (93.2%) and furfuryl alcohol selectivity (89.2%). At the same time, Cu0 species from the reduction of Cu2+ ions in spinel phases were deduced to be more active for FFR hydrogenation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号