首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Millimeter size γ‐Al2O3 beads were prepared by alginate assisted sol–gel method and grafting organic groups with propyl sulfonic acid and alkyl groups as functionalized γ‐Al2O3 bead catalysts for fructose dehydration to 5‐hydroxymethylfurfural (5‐HMF). Experiment results showed that the porous structure of γ‐Al2O3 beads was favorable to the loading and dispersion of active components, and had an obvious effect on the properties of the catalyst. The lower calcination temperature of γ‐Al2O3 beads increased the specific surface area, the hydrophobicity and the activity of catalysts. Competition between the reaction of alkyl groups and ‐SH groups with surface hydroxyl during the preparation process of the catalyst influenced greatly the acid site densities, hydrophobic properties and activity of the catalyst. With an increase in the alkyl group chain, the hydrophobicity of catalysts increased obviously and the activity of the catalyst was enhanced. The most hydrophobic catalyst C16‐SO3H‐γ‐Al2O3–650°C exhibited the highest yield of 5‐HMF (84%) under the following reaction conditions: reaction medium of dimethylsulfoxide/H2O (V/V, 4:1), catalyst amount of 30 mg, temperature of 110°C and reaction time of 4 hr.  相似文献   

2.
The effect of manganese on the dispersion, reduction behavior and active states of surface of supported copper oxide catalysts have been investigated by XRD, temperature‐programmed reduction and XPS. The activity of methanol synthesis from CO2/H2 was also investigated. The catalytic activity over CuO‐MnOx/γ‐Al2O3 catalyst for CO2 hydrogenation is higher than that of CuO/γ‐Al2O3. The adding of manganese is beneficial in enhancing the dispersion of the supported copper oxide and make the TPR peak of the CuO‐MnKx/γ‐Al2O3 catalyst different from the individual supported copper and manganese oxide catalysts, which indicates that there exists strong interaction between the copper and manganese oxide. For the CuO/γ‐Al2O3 catalyst there are two reducible copper oxide species; α and β peaks are attributed to the reduction of highly dispersed copper oxide species and bulk CuO species, respectively. For the CuO‐MnOx/γ‐Al2O3 catalyst, four reduction peaks are observed, α peak is attributed to the dispersed copper oxide species; β peak is ascribed to the bulk CuO; γ peak is attributed to the reduction of high dispersed CuO interacting with manganese; δ peak may be the reduction of the manganese oxide interacting with copper oxide. XPS results show that Cu+ mostly existed on the working surface of the Cu‐Mn/γ‐Al2O3 catalysts. The activity was promoted by Cu with positive charge which was formed by means of long path exchange function between Cu? O? Mn. These results indicate that there is synergistic interaction between the copper and manganese oxide, which is responsible for the high activity of CO2 hydrogenation.  相似文献   

3.
The Beckmann rearrangement of cyclohexanone oxime (CHO) to ?‐caprolactam (?‐C) was studied in a plug flow reactor at 300–400°C under atmospheric pressure by using Hβ, ZSM‐5, and alumina pillared montmorillonite. With Hβ(X) Y zeolites, raising the SiO2/Al2O3 molar ratio (X) results in the enhancement of catalyst acid strength with concomitant decrease of the total acid amount. In creasing the calcination temperature (Y) causes remarkable diminution of catalyst surface area, acid strength, and acid amount. A similar trend was found for AlPMY catalysts. In there action of CHO, the initial catalytic activity correlates well with the total acid amount of various catalysts except for Hβ(10) Y (Y > 600°C). The reaction proceeds on both Brönsted and Lewis acid sites and the catalyst deactivation most likely occurs at the strong Brönsted acid sites. The effect of solvents in the feed on the catalytic results was also investigated; it was found that polar solvents such as ethanol or n‐butanol give high ?‐C yield and longer catalyst life time. In the reaction of CHO/C2H5OH over Hβ(10)800 at 400°C and W/F 74.6 gh/mol, the CHO conversion and ?‐C yield remain 100% and 92%, respectively, for at least 20 h time‐on‐stream. The reaction paths and the mechanism for ?‐C formation are proposed.  相似文献   

4.
The effects of calcination temperature and feedstock pretreatment on the catalytic performance of Co/γ‐Al2O3 catalysts were studied for partial oxidation of methane (POM) to synthesis gas, with emphasis on the role of feedstock pretreatment. The physicochemical properties of the catalysts were characterized by N2 adsorption, X‐ray diffraction (XRD), transmission electron microscopy (TEM), H2 temperature‐programmed reduction (H2‐TPR), and Raman spectroscopy. The results showed that the pretreatment of the catalyst by reaction gas significantly improved the catalytic activity and stability for the POM reaction. On the other hand, the effect of calcination temperature was less significant. Although the initial activity was increased by an increased calcination temperature, the catalyst without the feedstock pretreatment suffered a rapid deactivation. The reaction‐atmosphere pretreatment was revealed as a process that mainly modified the surface structure of the catalyst. In that process, the formation of a CoAl2O4‐like compound led to high Co metal dispersion after reduction, and the transformation of the carrier into α‐Al2O3 occurred over the catalyst surface. Both the high dispersion of cobalt and the presence of α‐Al2O3 surface phase were assumed as the important factors resulting in an excellent catalytic performance in terms of high activity and high stability.  相似文献   

5.
Vapor‐phase aldol condensation of n‐butyraldehyde to 2‐ethyl‐2‐hexenal was studied at 1 atm and 150~ 300°C in a fixed‐bed, integral‐flow reactor by using NaX, KX, γ‐Al2O3 and Na/NaOH/γ‐Al2CO3 catalysts. Ion exchange of NaX zeolite with potassium acetate solution results in a decrease of crystallinity and apparent lowering of surface area, whereas the basic strength is enhanced. Treatment of γ‐Al2O3 with NaOH and Na causes a large decrease of the surface area but strong enhancement of the catalyst basicity. The catalytic activity on the basis of unit surface area is in the order Na/NaOH/γ‐Al2O3 < KXU < KXW < NaX >γ‐Al2O3, in accordance with the relative catalyst basic strength. The molar ratio of trimeric to dimeric products increases with increasing the reaction temperature and the catalyst basic strength except for Na/NaOH/γ‐Al2O3. Very high selectivity of 2‐ethyl‐2‐hexenal (>98.5%) was observed for reactions over NaX zeolite at 150°C. Based on the FT‐IR and the catalytic results, the reaction paths are proposed as follows: self‐aldol condensation of n‐butyraldehyde, followed by dehydration produces 2‐ethyl‐2‐hexenal, which then reacts with n‐butyraldehyde and successively dehydrates to 2,4‐diethyl‐2,4‐octadienal and 1,3,5‐triethylbenzene. For the reaction over NaX, the calculated Arrhenius frequency factor and activation energy are 314 mol/g·h and 32.6 kJ/mol, respectively.  相似文献   

6.
Catalytic CO oxidation by molecular O2 is an important model reaction in both the condensed phase and gas‐phase studies. Available gas‐phase studies indicate that noble metal is indispensable in catalytic CO oxidation by O2 under thermal collision conditions. Herein, we identified the first example of noble‐metal‐free heteronuclear oxide cluster catalysts, the copper–vanadium bimetallic oxide clusters Cu2VO3–5? for CO oxidation by O2. The reactions were characterized by mass spectrometry, photoelectron spectroscopy, and density functional calculations. The dynamic nature of the Cu?Cu unit in terms of the electron storage and release is the driving force to promote CO oxidation and O2 activation during the catalysis.  相似文献   

7.
Dimethyldichlorosilane, one of the most consumed organosilicon monomers in the industry, can be prepared in a highly efficient and environmentally friendly synthesis method of disproportionating methylchlorosilanes. However, the internal mechanism of the reaction remains unclear. In this paper, the mechanism catalyzed by AlCl3/MIL‐53(Al) and AlCl3/MIL‐53(Al)@γ‐Al2O3 catalysts was calculated at B3LYP/6‐311++G(3df, 2pd) level by using the density functional theory (DFT). The results showed that although the two catalysts had similar active structures, the catalytic effects were significantly different. The Lewis acid center on the surface of γ‐Al2O3 in the core‐shell catalyst is complementary to the classic Lewis acid AlCl3 through the spatial superposition effect, which greatly improves the Lewis acid catalytic activity of AlCl3/MIL‐53(Al)@γ‐Al2O3.  相似文献   

8.
Boron‐containing materials have recently been identified as highly selective catalysts for the oxidative dehydrogenation (ODH) of alkanes to olefins. It has previously been demonstrated by several spectroscopic characterization techniques that the surface of these boron‐containing ODH catalysts oxidize and hydrolyze under reaction conditions, forming an amorphous B2(OH)xO(3?x/2) (x=0–6) layer. Yet, the precise nature of the active site(s) remains elusive. In this Communication, we provide a detailed characterization of zeolite MCM‐22 isomorphously substituted with boron (B‐MWW). Using 11B solid‐state NMR spectroscopy, we show that the majority of boron species in B‐MWW exist as isolated BO3 units, fully incorporated into the zeolite framework. However, this material shows no catalytic activity for ODH of propane to propene. The catalytic inactivity of B‐MWW for ODH of propane falsifies the hypothesis that site‐isolated BO3 units are the active site in boron‐based catalysts. This observation is at odds with other traditionally studied catalysts like vanadium‐based catalysts and provides an important piece of the mechanistic puzzle.  相似文献   

9.
The physicochemical properties of V2O5/Al2O3 and MgO–V2O5/Al2O3 supported catalysts (Mg : V = 1 : 1, 2 : 1, and 3 : 2) obtained by consecutive impregnation of the support with solutions of vanadium and magnesium precursors are studied using a complex of mutually complementary methods (XRD, Raman spectroscopy, UV–Vis spectrometry, and TPR-H2). The effect of the formation of surface magnesium vanadates of various composition and structure on the catalytic properties of the supported vanadium oxide catalysts in the oxidative dehydrogenation of propane is studied. The introduction of magnesium in the samples and an increase in its content, accompanied by a change in the structure of the surface vanadium oxide phases from polymeric VO6/VO5 species to surface metavanadate species, magnesium metavanadate, and further to magnesium divanadate, significantly affects their catalytic properties in the reaction of the oxidative dehydrogenation of propane to propylene.  相似文献   

10.
Supported Pd catalysts are active in catalyzing the highly exothermic methane combustion reaction but tend to be deactivated owing to local hyperthermal environments. Herein we report an effective approach to stabilize Pd/SiO2 catalysts with porous Al2O3 overlayers coated by atomic layer deposition (ALD). 27Al magic angle spinning NMR analysis showed that Al2O3 overlayers on Pd particles coated by the ALD method are rich in pentacoordinated Al3+ sites capable of strongly interacting with adjacent surface PdOx phases on supported Pd particles. Consequently, Al2O3‐decorated Pd/SiO2 catalysts exhibit active and stable PdOx and Pd–PdOx structures to efficiently catalyze methane combustion between 200 and 850 °C. These results reveal the unique structural characteristics of Al2O3 overlayers on metal surfaces coated by the ALD method and provide a practical strategy to explore stable and efficient supported Pd catalysts for methane combustion.  相似文献   

11.
Investigations on the reactivity of atomic clusters have led to the identification of the elementary steps involved in catalytic CO oxidation, a prototypical reaction in heterogeneous catalysis. The atomic oxygen species O.? and O2? bonded to early‐transition‐metal oxide clusters have been shown to oxidize CO. This study reports that when an Au2 dimer is incorporated within the cluster, the molecular oxygen species O22? bonded to vanadium can be activated to oxidize CO under thermal collision conditions. The gold dimer was doped into Au2VO4? cluster ions which then reacted with CO in an ion‐trap reactor to produce Au2VO3? and then Au2VO2?. The dynamic nature of gold in terms of electron storage and release promotes CO oxidation and O? O bond reduction. The oxidation of CO by atomic clusters in this study parallels similar behavior reported for the oxidation of CO by supported gold catalysts.  相似文献   

12.
Effect of zirconium presence in the silica framework and content and speciation of vanadium surface oxo-complexes on the catalytic behavior of VOx/Zr–SBA-15 catalysts in oxidative dehydrogenation of ethanol was investigated. Experimental results bring evidence of successful incorporation of zirconium into ordered mesoporous silica framework with the preservation of ordered mesoporosity by hydrothermal template base synthesis method. The presence of zirconium in the SBA-15 framework increases reducibility of vanadium species and acidity of the catalysts. It is reflected in higher activity of vanadium species expressed as turn-over frequency (e.g., TOF of 20 h?1 for 5%VOx/Zr–SBA-15 sample in comparison with TOF of 12 h?1 for 5%VOx/SBA-15 sample) and also in significant decrease of selectivity to acetaldehyde (65% in comparison with 90% for mentioned samples) followed by increase in selectivity to ethylene (25% in comparison with 5%). This change in distribution of reaction products is related to stronger acidity character of surface OH groups and inhibition effect of formed water vapours on the oxidative dehydrogenation products (acetaldehyde). Catalytic data also reveal that oligomeric/polymeric tetrahedrally coordinated vanadium species exhibit higher activity in ethanol oxidative dehydrogenation than monomeric complexes. In addition, comparison of the catalytic performance of VOx/Zr–SBA-15 catalysts with VOx/SBA-15 catalysts showed that catalytic properties of VOx/Zr–SBA-15 catalysts can be tuned by incorporation of controlled amount of zirconium into silica framework.  相似文献   

13.
Hydrogen production from coal gasification provides a cleaning approach to convert coal resource into chemical energy, but the key procedures of coal gasification and thermal catalytic water–gas shift (WGS) reaction in this energy technology still suffer from high energy cost. We herein propose adopting a solar–driven WGS process instead of traditional thermal catalysis, with the aim of greatly decreasing the energy consumption. Under light irradiation, the CuOx/Al2O3 delivers excellent catalytic activity (122 μmol gcat?1 s?1 of H2 evolution and >95 % of CO conversion) which is even more efficient than noble‐metal‐based catalysts (Au/Al2O3 and Pt/Al2O3). Importantly, this solar‐driven WGS process costs no electric/thermal power but attains 1.1 % of light‐to‐energy storage. The attractive performance of the solar‐driven WGS reaction over CuOx/Al2O3 can be attributed to the combined photothermocatalysis and photocatalysis.  相似文献   

14.
The syntheses of transition metal promoted (M = Co, Cr, Fe, Mo) supported vanadium phosphate (VPO) catalysts (TiO2 (anatase), γ‐Al2O3) and their characterization by N2‐adsorption, X‐ray diffractometry (XRD), FTIR‐spectroscopy and determination of V‐valence state is reported. The catalytic properties were checked in the heterogeneous catalytic ammoxidation of 2, 6‐dichlorotoluene to the corresponding nitrile. The catalyst samples were prepared by synthesis of the precursor compound VOHPO4 · 0.5 H2O, impregnation using various metal salt solutions and mixing with the support materials. The characterization revealed increased surface areas for all the promoted samples in comparison to the basic materials. XRD showed the formation of (VO)2P2O7 after calcinations as well as patterns of support materials (anatase, γ‐Al2O3). The formation of crystalline proportions of mixed oxides were not observed. The catalytic ammoxidation runs revealed a significant effect of the promoter metals on the catalytic properties by an increase of yield by ca. 20 % compared to bulk VPO. Almost complete conversion of 2, 6‐dichlorotoluene and 81 % yield of nitrile were observed using a 25 %VPCoO/γ‐Al2O3 catalyst.  相似文献   

15.
Catalytic direct dehydrogenation of methanol to formaldehyde was carried out over Ag‐SiO2‐MgO‐Al2O3 catalysts prepared by sol‐gel method. The optimal preparation mass fractions were determined as 8.3% MgO, 16.5% Al2O3 and 20% silver loading. Using this optimum catalyst, excellent activity and selectivity were obtained. The conversion of methanol and the selectivity to formaldehyde both reached 100%, which were much higher than other previously reported silver supported catalysts. Based on combined characterizations, such as X‐ray diffraction (XRD), scanning electronic microscopy (SEM), diffuse reflectance ultraviolet‐visible spectroscopy (UV‐Vis, DRS), nitrogen adsorption at low temperature, temperature programmed desorption of ammonia (NH3‐TPD), desorption of CO2 (CO2‐TPD), etc., the correlation of the catalytic performance to the structural properties of the Ag‐SiO2‐ MgO‐Al2O3 catalyst was discussed in detail. This perfect catalytic performance in the direct dehydrogenation of methanol to formaldehyde without any side‐products is attributed to its unique flower‐like structure with a surface area less than 1 m2/g, and the strong interactions between neutralized support and the nano‐sized Ag particles as active centers.  相似文献   

16.
The two‐component mixed oxides FeVOx with various molar ratio of Fe to V were prepared and their phase composition, structure and morphology were determined by XRD and SEM. This prepared material was employed for liquid‐phase oxidation of octanol using H2O2 as oxidant. The mixed oxide FeVOx with 2.5 : 1 of Fe to V molar ratio was found to be an effective catalyst with high selectivity to octanal under solvent‐free condition. The relationship between the catalytic performance and phase compositions of the mixed oxides was investigated by the test of its activity and XRD characterization. The catalytic action of the active sites including redox and acidic sites formed by interaction between VOx and FeOx on the surface of the catalyst was discussed. The catalyst was easily recovered and reused.  相似文献   

17.
Laser Induced Breakdown Spectroscopy (LIBS) method is introduced as a novel approach in this work to study catalyst deactivation of V2O5/γ‐‐Al2O3 for gas‐phase dehydration of glycerol and producing acrolein. The LIBS results of V2O5/γ‐Al2O3 samples are compared with those data that are obtained by Inductively Coupled Plasma Optical Emission Spectrometry (ICP‐OES). Experimental data of LIBS data specify that line intensities of vanadium are decreased by deactivation of V2O5/γ‐Al2O3 catalyst. A comparison between the results of LIBS test as well as ICP‐OES analysis shows that the amount of vanadium is decreased in the catalyst. Moreover, coke formation changes the surface of the catalyst. The results of deactivation of V2O5/γ‐Al2O3 are also compared with Pd/C catalyst deactivation.  相似文献   

18.
EPR, UV/Vis and FTIR spectroscopy as well as thermal analysis (TA/MS) were applied to study the influence of sulfate species present in the anatase support on the specific nature of VOx species in supported VOx/TiO2 catalysts. Those sulfate species modify the local structure of the supported vanadyl species and lead to the formation of two types of VO2+ sites instead of only one type being formed on sulfate‐free anatase. EPR and FTIR spectroscopic measurements revealed that a part of the VO2+ species are directly bound to the surface sulfate species. By TA/MS it was found that SO2 is released at lower temperature from VOx/TiO2 in comparison to the vanadium‐free support. The direct bonding between sulfate and VOx species stabilizes the latter on the surface of VOx/TiO2 resulting in three effects: 1) a higher V site dispersion in comparison to sulfate‐free TiO2, 2) a better resistance of surface vanadyls against diffusion into the bulk of the support and 3) a much faster reoxidation of reduced V sites than observed on sulfate‐free TiO2.  相似文献   

19.
A CuO/Al2O3 catalyst was prepared using the impregnation method. The catalytic activity of CuO/Al2O3 for the ozonation of acid red B (ARB) in aqueous solution was studied, the chemical oxygen demand (COD) removal rate was an indicator for catalytic activity evaluation. The effects of initial ARB concentration, solution pH, and different oxidative degradation systems on oxidative degradation of ARB solution were studied. The CuO/Al2O3 catalyst was characterized using X‐ray diffractometry (XRD), N2 adsorption desorption test, X‐ray photoelectron spectroscopy (XPS), and zero‐point charge (pHzpc). The results show that copper species on the carrier were in the form of CuO and highly dispersed on the carrier. CuO can increase the alkalinity of the Al2O3 surface, and the CuO/Al2O3 catalyst facilitates the decomposition of O3 into ·OH, which was beneficial for the catalytic O3 oxidation degradation reaction. With the increase of the initial concentration of simulated wastewater, the CuO/Al2O3 catalytic reaction still has a high COD removal rate. Alkaline solution was of benefit to catalyze the degradation of ARB solution. When the ARB solution pH = 8.93, the degradation reaction was carried out for 40 min, the COD removal rate reached 83.2%. The degradation reaction was dominated by the hydroxyl radical (·OH) reaction.  相似文献   

20.
Homobimetallic vanadium(V) complex of the composition [(CH3)2NH2+]2[(VO2)2(sloxCl)].4H2O was synthesized from the reaction of V2O5 with bis(5‐chlorosalicylaldehyde)oxaloyldihydrazone ligand in a 1:1 molar ratio in methanol. The structure of the complex was established by X‐ray crystallography. Reactivity of the complex with H2O2 leads to bis (monooxidoperoxidovanadate(V)) [{VO(O2)}2(sloxCl)]2? formation and with HCl, oxidohydroxido complex of composition [(VO (OH)(sloxCl)]2? was formed. Binding interaction of the complex was also investigated toward protein (BSA) and it was found to be 2.21 x 108 M?1. The catalytic activity of the complex in the oxidation of alcohols and oxidative bromination of some organic substrates was also studied, and it showed a great potent as a catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号