首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the remarkable progress made in controllable self‐assembly of stimuli‐responsive supramolecular polymers (SSPs), a basic issue that has not been consideration to date is the essential binding site. The noncovalent binding sites, which connect the building blocks and endow supramolecular polymers with their ability to respond to stimuli, are expected to strongly affect the self‐assembly of SSPs. Herein, the design and synthesis of a dual‐stimuli thermo‐ and photoresponsive Y‐shaped supramolecular polymer (SSP2) with two adjacent β‐cyclodextrin/azobenzene (β‐CD/Azo) binding sites, and another SSP (SSP1) with similar building blocks, but only one β‐CD/Azo binding site as a control, are described. Upon gradually increasing the polymer solution temperature or irradiating with UV light, SSP2 self‐assemblies with a higher binding‐site distribution density; exhibits a flower‐like morphology, smaller size, and more stable dynamic aggregation process; and greater controllability for drug‐release behavior than those observed with SSP1 self‐assemblies. The host–guest binding‐site‐tunable self‐assembly was attributed to the positive cooperativity generated among adjacent binding sites on the surfaces of SSP2 self‐assemblies. This work is beneficial for precisely controlling the structural parameters and controlled release function of SSP self‐assemblies.  相似文献   

2.
A novel metal‐induced template for the self‐assembly of two independent phosphane ligands by means of unprecedented multiple noncovalent interactions (classical hydrogen bond, weak hydrogen bond, metal coordination, π‐stacking interaction) was developed and investigated. Our results address the importance and capability of weak hydrogen bonds (WHBs) as important attractive interactions in self‐assembling processes based on molecular recognition. Together with a classical hydrogen bond, WHBs may serve as promoters for the specific self‐assembly of complementary monomeric phosphane ligands into supramolecular hybrid structures. The formation of an intermolecular C? H???N hydrogen bond and its persistence in the solid state and in solution was studied by X‐ray crystal analysis, mass spectrometry and NMR spectroscopy analysis. Further evidence was demonstrated by DFT calculations, which gave specific geometric parameters for the proposed conformations and allowed us to estimate the energy involved in the hydrogen bonds that are responsible for the molecular recognition process. The presented template can be regarded as a new type of self‐assembled β‐turn mimic or supramolecular pseudo amino acid for the nucleation of β‐sheet structures when attached to oligopeptides.  相似文献   

3.
In both title compounds, C10H13BO3S, (I), and C13H17BO3, (II), the molecules adopt nearly planar conformations. The crystal packing of (I) consists of a supramolecular two‐dimensional network with a herringbone‐like topology formed by self assembly of centrosymmetric pairs of molecules linked via dipole–dipole interactions. The crystal structure of (II) consists of a supramolecular two‐dimensional network built up from centrosymmetric pairs of molecules viaπ–π interactions. These pairs of molecules are self‐organized in an offset fashion related by a symmetry centre, generating supramolecular ribbons running along the [101] direction. Neighbouring ribbons are stacked via complementary van der Waals and hydrophobic methyl–methyl interactions.  相似文献   

4.
The self‐assembly of a new type of three‐dimensional (3D) supramolecular polymers from tetrahedral monomers in both organic and aqueous media is described. We have designed and synthesized two tetraphenylmethane derivatives T1 and T2 , both of which bear four tetrathiafulvalene (TTF) units. When the TTF units were oxidized to the radical cation TTF.+, their pre‐organized tetrahedral arrangement remarkably enhanced their intermolecular dimerization, leading to the formation of new 3D spherical supramolecular polymers. The structure of the supramolecular polymers has been inferred on the basis of UV/Vis absorption, electron paramagnetic resonance, cyclic voltammetry, and dynamic light scattering (DLS) analysis, as well as by comparing these properties with those of the self‐assembled structures of mono‐, di‐, and tritopic control compounds. DLS experiments revealed that the spherical supramolecular polymers had hydrodynamic diameters of 68 nm for T1 (75 μM ) in acetonitrile and 105 nm for T2 (75 μM ) in water/acetonitrile (1:1). The 3D spherical structures of the supramolecular polymers formed in different solvents were also supported by SEM and AFM experiments.  相似文献   

5.
Water‐soluble three‐dimensional (3D) polymers are structurally ideal for the construction of ordered porous materials for in‐situ and tunable loading and release of guests. For many years, studies on ordered porous materials have been confined to crystalline solids. Since 2014, self‐assembly has been developed as a robust strategy for the preparation of water‐soluble 3D polymers that possess defined and intrinsic porosity. Through the encapsulation of cucurbit[8]uril for aromatic dimers, ordered diamondoid supramolecular organic frameworks can be assembled from tetrahedral monomers. With [Ru(bipy)3]2+‐derived octahedral complexes as precursors, cubic supramolecular metal‐organic frameworks have been assembled. One supramolecular organic framework has also been utilized to prepare the first homogeneous covalent organic framework through the [2+2] alkene cycloaddition, whereas the quantitative formation of the hydrazone bonds can be utilized to synthesize flexible porous organic frameworks. The new water‐soluble ordered and flexible polymeric frameworks are able to include drugs and biomacromolecules to accomplish in situ loading and intracellular delivery and to enrich photosensitizers and catalysts to enhance discrete visible light‐induced reactions. This review highlights the advances.  相似文献   

6.
We introduce monosaccharides as versatile water‐soluble units to compatibilise supramolecular polymers based on the benzene‐1,3,5‐tricarboxamide (BTA) moiety with water. A library of monosaccharide‐based BTAs is evaluated, varying the length of the alkyl chain (hexyl, octyl, decyl and dodecyl) separating the BTA and saccharide units, as well as the saccharide units (α‐glucose, β‐glucose, α‐mannose and α‐galactose). In all cases, the monosaccharides impart excellent water compatibility. The length of the alkyl chain is the determining factor to obtain either long, one‐dimensional supramolecular polymers (dodecyl spacer), small aggregates (decyl spacer) or molecularly dissolved (octyl and hexyl) BTAs in water. For the BTAs comprising a dodecyl spacer, our results suggest that a cooperative self‐assembly process is operative and that the introduction of different monosaccharides does not significantly change the self‐ assembly behaviour. Finally, we investigate the potential of post‐assembly functionalisation of the formed supramolecular polymers by taking advantage of dynamic covalent bond formation between the monosaccharides and benzoxaboroles. We observe that the supramolecular polymers readily react with a fluorescent benzoxaborole derivative permitting imaging of these dynamic complexes by confocal fluorescence microscopy.  相似文献   

7.
Despite a growing interest in two‐dimensional polymers, their rational synthesis remains a challenge. The solution‐phase synthesis of a two‐dimensional polymer is reported. A DNA‐based monomer self‐assembles into a supramolecular network, which is further converted into the covalently linked two‐dimensional polymer by anthracene dimerization. The polymers appear as uniform monolayers, as shown by AFM and TEM imaging. Furthermore, they exhibit a pronounced solvent responsivity. The results demonstrate the value of DNA‐controlled self‐assembly for the formation of two‐dimensional polymers in solution.  相似文献   

8.
Anion–π interactions have been widely studied as new noncovalent driving forces in supramolecular chemistry. However, self‐assembly induced by anion–π interactions is still largely unexplored. Herein we report the formation of supramolecular amphiphiles through anion–π interactions, and the subsequent formation of self‐assembled vesicles in water. With the π receptor 1 as the host and anionic amphiphiles, such as sodium dodecylsulfate (SDS), sodium laurate (SLA), and sodium methyl dodecylphosphonate (SDP), as guests, the sequential formation of host–guest supramolecular amphiphiles and self‐assembled vesicles was demonstrated by SEM, TEM, DLS, and XRD techniques. The intrinsic anion–π interactions between 1 and the anionic amphiphiles were confirmed by crystal diffraction, HRMS analysis, and DFT calculations. Furthermore, the controlled disassembly of the vesicles was promoted by competing anions, such as NO3?, Cl?, and Br?, or by changing the pH value of the medium.  相似文献   

9.
One‐dimensional (1D) self‐assemblies of nanocrystals are of interest because of their vectorial and polymer‐like dynamic properties. Herein, we report a simple method to prepare elongated assemblies of semiconductor nanorods (NRs) through end‐to‐end self‐assembly. Short‐chained water‐soluble thiols were employed as surface ligands for CdSe NRs having a wurtzite crystal structure. The site‐specific capping of NRs with these ligands rendered the surface of the NRs amphiphilic. The amphiphilic CdSe NRs self‐assembled to form elongated wires by end‐to‐end attachment driven by the hydrophobic effect operating between uncapped NR ends. The end‐to‐end assembly technique was further applied to CdS NRs and CdSe tetrapods (TPs) with a wurtzite structure.  相似文献   

10.
A highly fluorescent (ΦF=0.60) and water‐soluble two‐dimensional (2D) honeycomb‐shaped supramolecular organic framework (SOF) was successfully synthesized in pure aqueous solution via self‐assembly of novel cyanostilbene‐functionalized trilateral guest molecules and cucurbit[8]uril hosts. The size of this fluorescent 2D SOF was >500 nm in diameter, 1.7 nm in thickness, and 3.9 nm in the honeycomb pore diameter. This 2D SOF holds potential as a new all‐organic photosensitizer template for photocatalytic H2 evolution from pure water.  相似文献   

11.
Self‐organization of organic molecules through weak noncovalent forces such as CH/π interactions and creation of large hierarchical supramolecular structures in the solid state are at the very early stage of research. The present study reports direct evidence for CH/π interaction driven hierarchical self‐assembly in π‐conjugated molecules based on custom‐designed oligophenylenevinylenes (OPVs) whose structures differ only in the number of carbon atoms in the tails. Single‐crystal X‐ray structures were resolved for these OPV synthons and the existence of long‐range multiple‐arm CH/π interactions was revealed in the crystal lattices. Alignment of these π‐conjugated OPVs in the solid state was found to be crucial in producing either right‐handed herringbone packing in the crystal or left‐handed helices in the liquid‐crystalline mesophase. Pitch‐ and roll‐angle displacements of OPV chromophores were determined to trace the effect of the molecular inclination on the ordering of hierarchical structures. Furthermore, circular dichroism studies on the OPVs were carried out in the aligned helical structures to prove the existence of molecular self‐assembly. Thus, the present strategy opens up new approaches in supramolecular chemistry based on weak CH/π hydrogen bonding, more specifically in π‐conjugated materials.  相似文献   

12.
Highly efficient light‐harvesting systems were successfully fabricated in aqueous solution based on the supramolecular self‐assembly of a water‐soluble pillar[6]arene (WP6), a salicylaldehyde azine derivative (G), and two different fluorescence dyes, Nile Red (NiR) or Eosin Y (ESY). The WP6‐G supramolecular assembly exhibits remarkably improved aggregation‐induced emission enhancement and acts as a donor for the artificial light‐harvesting system, and NiR or ESY, which are loaded within the WP6‐G assembly, act as acceptors. An efficient energy‐transfer process takes place from the WP6‐G assembly not only to NiR but also to ESY for these two different systems. Furthermore, both of the WP6‐G‐NiR and WP6‐G‐ESY systems show an ultrahigh antenna effect at a high donor/acceptor ratio.  相似文献   

13.
A three‐dimensional DNA hydrogel was generated by self‐assembly of short linear double‐stranded DNA (dsDNA) building blocks equipped with sticky ends. The resulting DNA hydrogel is thermoresponsive and the length of the supramolecular dsDNA structures varies with temperature. The average diffusion coefficients of the supramolecular dsDNA structures formed by self‐assembly were determined by diffusion‐ordered NMR spectroscopy (DOSY NMR) for temperatures higher than 60 °C. Temperature‐dependent rheological measurements revealed a gel point of 42±1 °C. Below this temperature, the resulting material behaved as a true gel of high viscosity with values for the storage modulus G′ being significantly larger than that for the loss modulus G′′. Frequency‐dependent rheological measurements at 20 °C revealed a mesh size (ξ) of 15 nm. AFM analysis of the diluted hydrogel in the dry state showed densely packed structures of entangled chains, which are also expected to contain multiple interlocked rings and catenanes.  相似文献   

14.
The molecular‐level motions of a coronene‐based supramolecular rotator are amplified into macroscopic changes of crystals by co‐assembly of coronene and TCNB (1,2,4,5‐tetracyanobenzene) into a charge‐transfer complex. The as‐prepared cocrystals show remarkable self‐healing behavior and thermo‐mechanical responses during thermally‐induced reversible single‐crystal‐to‐single‐crystal (SCSC) phase transitions. Comprehensive analysis of the microscopic observations as well as differential scanning calorimetry (DSC) measurements and crystal habits reveal that a thermally‐reduced‐rate‐dependent dynamic character exists in the phase transition. The crystallographic studies show that the global similarity of the packing patterns of both phases with local differences, such as molecular stacking sequence and orientations, should be the origin of the self‐healing behavior of these crystals.  相似文献   

15.
Interactions between proteins frequently involve recognition sequences based on multivalent binding events. Dimeric 14‐3‐3 adapter proteins are a prominent example and typically bind partner proteins in a phosphorylation‐dependent mono‐ or bivalent manner. Herein we describe the development of a cucurbit[8]uril (Q8)‐based supramolecular system, which in conjunction with the 14‐3‐3 protein dimer acts as a binary and bivalent protein assembly platform. We fused the phenylalanine–glycine–glycine (FGG) tripeptide motif to the N‐terminus of the 14‐3‐3‐binding epitope of the estrogen receptor α (ERα) for selective binding to Q8. Q8‐induced dimerization of the ERα epitope augmented its affinity towards 14‐3‐3 through a binary bivalent binding mode. The crystal structure of the Q8‐induced ternary complex revealed molecular insight into the multiple supramolecular interactions between the protein, the peptide, and Q8.  相似文献   

16.
Hierarchical solution self‐assembly has become an important biomimetic method to prepare highly complex and multifunctional supramolecular structures. However, despite great progress, it is still highly challenging to prepare hierarchical self‐assemblies on a large scale because the self‐assembly processes are generally performed at high dilution. Now, an emulsion‐assisted polymerization‐induced self‐assembly (EAPISA) method with the advantages of in situ self‐assembly, scalable preparation, and facile functionalization was used to prepare hierarchical multiscale sea urchin‐like aggregates (SUAs). The obtained SUAs from amphiphilic alternating copolymers have a micrometer‐sized rattan ball‐like capsule (RBC) acting as the hollow core body and radiating nanotubes tens of micrometers in length as the hollow spines. They can capture model proteins effectively at an ultra‐low concentration (ca. 10 nm ) after functionalization with amino groups through click copolymerization.  相似文献   

17.
Incorporation of non‐equilibrium actions in the sequence of self‐assembly processes would be an effective means to establish bio‐like high functionality hierarchical assemblies. As a novel methodology beyond self‐assembly, nanoarchitectonics, which has as its aim the fabrication of functional materials systems from nanoscopic units through the methodological fusion of nanotechnology with other scientific disciplines including organic synthesis, supramolecular chemistry, microfabrication, and bio‐process, has been applied to this strategy. The application of non‐equilibrium factors to conventional self‐assembly processes is discussed on the basis of examples of directed assembly, Langmuir–Blodgett assembly, and layer‐by‐layer assembly. In particular, examples of the fabrication of hierarchical functional structures using bio‐active components such as proteins or by the combination of bio‐components and two‐dimensional nanomaterials, are described. Methodologies described in this review article highlight possible approaches using the nanoarchitectonics concept beyond self‐assembly for creation of bio‐like higher functionalities and hierarchical structural organization.  相似文献   

18.
Linear modules equipped with two terminal hydroxamic acid groups act as the building block of diverse two‐dimensional supramolecular motifs and patterns with room‐temperature stability on the close‐packed single‐crystal surfaces of silver and gold, revealing a complex self‐assembly scenario. By combining multiple investigation techniques (scanning tunneling microscopy, atomic force microscopy, X‐ray photoelectron spectroscopy, and density functional theory calculations), we analyze the characteristics of the ordered assemblies which range from close‐packed structures to polyporous networks featuring an exceptionally extended primitive unit cell with a side length exceeding 7 nm. The polyporous network shows potential for hosting and promoting the formation of chiral supramolecules, whereas a transition from 1D chiral randomness to an ordered racemate is discovered in a different porous phase. We correlate the observed structural changes to the adaptivity of the building block and surface‐induced changes in the chemical state of the hydroxamic acid functional group.  相似文献   

19.
Multiple noncovalent interactions can drive self‐assembly through different pathways. Here, by coordination‐assisted changes in π‐stacking modes between chromophores in pyrene‐conjugated histidine (PyHis), a self‐assembly system with reversible and inversed switching of supramolecular chirality, as well as circularly polarized luminescence (CPL) is described. It was found that l ‐PyHis self‐assembled into nanofibers showing P‐chirality and right‐handed CPL. Upon ZnII coordination, the nanofibers changed into nanospheres with M‐chirality, as well as left‐handed CPL. The process is reversible and the M‐chirality can change to P‐chirality by removing the ZnII ions. Experimental and theoretical models unequivocally revealed that the cooperation of metal coordination and π‐stacking modes are responsible the reversible switching of supramolecular chirality. This work not only provides insight into how multiple noncovalent interactions regulate self‐assembly pathways.  相似文献   

20.
Anisotropic colloids self‐assemble into different crystal structures compared to spherical colloids. Exploring and understanding their self‐assembly behavior could lead to creation of new materials with hierarchical structures through a bottom‐up process. Herein, we report metastable self‐assembly of theta‐shaped SiO2 colloids interacting with a depletion force in a quasi‐two‐dimensional space and we demonstrate that both a metastable “prone” crystal phase and a stable “standing” crystal phase can be formed, depending on the self‐assembly path. Path selection stems from an interplay between particle–particle interactions and particle–wall interactions. In particular, a twinning of the metastable crystals was observed and two twinning mirror axes were found. A variety of complex twinned crystals were formed by each individual mirror axis or their combinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号