首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Galvanic reduction (GR) is a classic reaction. In simple terms, metals can reduce less reactive (or more noble) metal ions, while the opposite—metals reduce more reactive (or less noble) metal ions—should not occur. However, recently we found that anti‐galvanic reduction (AGR) occurred to thiolated gold and silver nanoparticles. However, the essential issue whether the occurrence of AGR requires the assistance of reductive thiolate ligands or not still remained unanswered. In this work, by using a novel protocol (chemical reduction and physical ablation), we synthesized surfactant‐ and ligand‐free gold nanoparticles. We found that these as‐prepared nanoparticles can reduce silver ions and copper ions, thus illustrating that AGR is not dependent on reductive ligands. Further experiments demonstrated that AGR is applicable to other metal (such as Pt and Pd) nanoparticles and that the AGR process is size‐dependent. Finally, it was found that the Raman scattering signals of Rhodamine 6G are distinctly enhanced on the gold nanoparticles that had been reacted with silver ions, which indicates the use of AGR for tuning the property of nanoparticles.  相似文献   

2.
Metal nanoclusters have recently attracted considerable attention, not only because of their special size range but also because of their well‐defined compositions and structures. However, subtly tailoring the compositions and structures of metal nanoclusters for potential applications remains challenging. Now, a two‐phase anti‐galvanic reduction (AGR) method is presented for precisely tailoring Au44(TBBT)28 to produce Au47Cd2(TBBT)31 nanoclusters with a hard‐sphere random close‐packed structure, exhibiting Faradaic efficiencies of up to 96 % at ?0.57 V for the electrocatalytic reduction of CO2 to CO.  相似文献   

3.
We present a systemic investigation of a galvanic replacement technique in which active‐metal nanoparticles are used as sacrificial seeds. We found that different nanostructures can be controllably synthesized by varying the type of more noble‐metal ions and liquid medium. Specifically, nano‐heterostructures of noble metal (Ag, Au) or Cu nanocrystals on active‐metal (Mg, Zn) cores were obtained by the reaction of active‐metal nanoparticles with more noble‐metal ions in ethanol; Ag nanocrystal arrays were produced by the reaction of active‐metal nanoparticles with Ag+ ions in water; spongy Au nanospheres were generated by the reaction of active‐metal nanoparticles with AuCl4? ions in water; and SnO2 nanoparticles were prepared when Sn2+ were used as the oxidant ions. The key factors determining the product morphology are shown to be the reactivity of the liquid medium and the nature of the oxidant–reductant couple, whereas Mg and Zn nanoparticles played similar roles in achieving various nanostructures. When microsized Mg and Zn particles were used as seeds in similar reactions, the products were mainly noble‐metal dendrites. The new approach proposed in this study expands the capability of the conventional nanoscale galvanic replacement method and provides new avenues to various structures, which are expected to have many potential applications in catalysis, optoelectronics, and biomedicine.  相似文献   

4.
Host–guest inclusion complexes are abundant in molecular systems and of fundamental importance in living organisms. Realizing a colloidal analogue of a molecular dynamic inclusion complex is challenging because inorganic nanoparticles (NPs) with a well‐defined cavity and portal are difficult to synthesize in high yield and with good structural fidelity. Herein, a generic strategy towards the fabrication of dynamic 1:1 inclusion complexes of metal nanoparticles inside oxide nanocups with high yield (>70 %) and regiospecificity (>90 %) by means of a reactive double Janus nanoparticle intermediate is reported. Experimental evidence confirms that the inclusion complexes are formed by a kinetically controlled mechanism involving a delicate interplay between bipolar galvanic corrosion and alloying–dealloying oxidation. Release of the NP guest from the nanocups can be efficiently triggered by an external stimulus.  相似文献   

5.
Gold nanoparticle (Au‐NPs)‐Titanium oxide nanotube (TiO2‐NTs) electrodes are prepared by using galvanic deposition of gold nanoparticles on TiO2‐NTs electrodes as support. Scanning electron microscopy and energy‐dispersive X‐ray spectroscopy results indicate that nanotubular TiO2 layers consist of individual tubes of about 60–90 nm diameters and gold nanoparticles are well‐dispersed on the surface of TiO2‐NTs support. The electrooxidation of hydroquinone of Au‐NPs/TiO2‐NTs electrodes is investigated by different electrochemical methods. Au‐NPs/TiO2‐NTs electrode can be used repeatedly and exhibits stable electrocatalytic activity for the hydroquinone oxidation. Also, determination of hydroquinone in skin cream using this electrode was evaluated. Results were found to be satisfactory and no matrix effects are observed during the determination of hydroquinone content of the “skin cream” samples.  相似文献   

6.
Nanocomposite films [Ag/(PAH‐PSS)nPAH]m were fabricated on a silicon substrate using a time‐ and cost‐efficient spin‐assisted layer‐by‐layer (SA‐LbL) self‐assembly technique. A virtually monolayer‐like layer of self‐assembled silver nanoparticles was formed when deposition time increased to 30 min. It was found that polymer multilayers could effectively decrease the resistivity of silver nanoparticle monolayer, which was far higher than that of bulk silver metal; however, the resistivity of Ag/(PAH‐PSS)nPAH multilayer films increased along with the increasing of the number of polymer bilayers. XPS investigations showed that silver nanoparticles were partially oxidized, which might be the major cause of the high resistivity of silver nanoparticle monolayer. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
A novel bimetallic Cu–Pt nanoparticle supported onto Cu/indirectly carbonized nanoporous carbon composite (Cu–Pt/ICNPCC) was prepared through a two-step process: first, carbonization of furfuryl alcohol-infiltrated MOF-199 [metal–organic framework Cu3(BTC)2 (BTC?=?1,3,5-benzene tricarboxylate)], without removing the Cu metal with HF aqueous solution; second, the partial galvanic replacement reaction (GRR) of Cu nanoparticles by PtIV upon immersion in a platinum(IV) chloride solution. The synthesized materials characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDS), and electrochemical methods. The EDS result revealed that part of Cu nanoparticles have been substituted by Pt nanoparticles after GRR. The methanol oxidation at the surface of Cu–Pt/ICNPCC was investigated by cyclic voltammetry method in 0.5 M H2SO4 and indicated good electro-catalytic activity towards methanol oxidation (Ep?=?0.85 V vs. NHE and jf?=?1.00 mA cm?2). It is suggested that this improvement is attributed to the effect of proper Cu/ICNPCC for fine dispersion, efficient adhesion, and prevention of Pt coalescing.  相似文献   

8.
A catalyst model comprising platinum nanoparticles deposited on a TiO2(110) wafer was prepared in a vacuum, transferred in air, and characterized with a Kelvin probe force microscope placed in a N2 environment. The topography and local work function of individual nanoparticles were observed with single‐nanometer resolution in the N2 environment of one atmosphere pressure. Some nanoparticle presented positive shifts of work function relative to that of the TiO2 surface, while the others showed negative shifts. This finding suggests heterogeneous properties of the nanoparticles exposed to air and then N2. The ability of the advanced microscope was demonstrated in observing the work function of metal nanoparticles on a metal oxide support even in the presence of vapor environments.  相似文献   

9.
The realization of common materials transformations in nanocrystalline systems is fostering the development of novel nanostructures and allowing a deep look into the atomistic mechanisms involved. Galvanic corrosion is one such transformation. We studied galvanic replacement within individual metal nanoparticles by using a combination of plasmonic spectroscopy and scanning transmission electron microscopy. Single‐nanoparticle reaction trajectories showed that a Ag nanoparticle exposed to Au3+ makes an abrupt transition into a nanocage structure. The transition is limited by a critical structural event, which we identified by electron microscopy to comprise the formation of a nanosized void. Trajectories also revealed a surprisingly strong nonlinearity of the reaction kinetics, which we explain by a model involving the critical coalescence of vacancies into a growing void. The critical void size for galvanic exchange to spontaneously proceed was found to be 20 atomic vacancies.  相似文献   

10.
Well distributed Pd‐Cu bimetallic alloy nanoparticles supported on amine‐terminated ionic liquid functional three‐dimensional graphene (3D IL‐rGO/Pd‐Cu) as an efficient catalyst for Suzuki cross‐coupling reaction has been prepared via a facile synthetic method. The introduction of IL‐NH2 cations on the surface of graphene sheets can effectively avoid the re‐deposition of graphene sheets, allowing the catalyst to be reused up to 10 cycles. The addition of Cu not only saves cost but also ensures high catalytic efficiency. It is worthy to note that the catalyst 3D IL‐rGO/Pd2.5Cu2.5 can efficiently catalyze the Suzuki cross‐coupling reaction with the yield up to 100% in 0.25 h, almost one‐fold higher than that by the pristine IL‐rGO/Pd2.5 catalyst (52%). The Powder X‐Ray Diffraction (XRD), combining energy dispersive X‐ray spectroscopy (EDS) mapping results confirm the existence and distribution of Pd and Cu in the bimetallic nanoparticles. The transmission electron microscopy (TEM) reveals the nanoparticle size with an average diameter of 3.0 ± 0.5 nm. X‐ray photoelectron spectroscopy (XPS) analysis proved the presence of electron transfer from Cu to Pd upon alloying. Such alloying‐induced electronic modification of Pd‐Cu alloy and 3D ionic liquid functional graphene with large specific surface area both accounted for the catalytic enhancement.  相似文献   

11.
A simple and modular synthetic approach, based on miniemulsion polymerization, has been developed for the fabrication of composite polymer–metal nanoparticle materials. The procedure produces well‐defined composite structures consisting of gold, silver, or MnFe2O4 nanoparticles (~10 nm in diameter) encapsulated within larger spherical nanoparticles of poly(divinylbenzene) (~100 nm in diameter). This methodology readily permits the incorporation of multiple metal domains into a single polymeric particle, while still preserving the useful optical and magnetic properties of the metal nanoparticles. The morphology of the composite particles is retained upon increasing the inorganic content and also upon redispersion in organic solvents. Finally, the ability to tailor the surface chemistry of the composite nanoparticles and incorporate steric stabilizing groups using simple thiol‐ene chemistry is demonstrated. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1594–1606, 2010  相似文献   

12.
A novel core-shell luminol-based SiO2 nanoparticle While these nanoparticles were used as electrogenerated was synthesized by two step micro-emulsion method. chemiluminescence (ECL) reagent, the electrochemical (EC) reaction as well as the subsequent chemiluminescence (CL) reaction not only could be separated spatially, but also presented high efficiency for analytical purpose. In this case, the core-shell luminol-based SiO2 nanoparticles offered more potential to avoid the contradiction between the EC and the CL reaction conditions. A new ECL method based on the nanoparticle was developed, and isoniazid was selected as a model analyte to illustrate the characteristics of this new ECL method. Under the selected conditions, the proposed ECL response to isoniazid concentration was linear in the range of 1.0 ×10^-10 to 1.0 × 10^-6 g/mL with 2 × 10^-11g/mL detection limit.  相似文献   

13.
Atomically precise alloying and de‐alloying processes for the formation of Ag–Au and Cu–Au nanoparticles of 25‐metal‐atom composition (referred to as AgxAu25?x(SR)18 and CuxAu25?x(SR)18, in which R=CH2CH2Ph) are reported. The identities of the particles were determined by matrix‐assisted laser desorption ionization mass spectroscopy (MALDI‐MS). Their structures were probed by fragmentation analysis in MALDI‐MS and comparison with the icosahedral structure of the homogold Au25(SR)18 nanoparticles (an icosahedral Au13 core protected by a shell of Au12(SR)18). The Cu and Ag atoms were found to preferentially occupy the 13‐atom icosahedral sites, instead of the exterior shell. The number of Ag atoms in AgxAu25?x(SR)18 (x=0–8) was dependent on the molar ratio of AgI/AuIII precursors in the synthesis, whereas the number of Cu atoms in CuxAu25?x(SR)18 (x=0–4) was independent of the molar ratio of CuII/AuIII precursors applied. Interestingly, the CuxAu25?x(SR)18 nanoparticles show a spontaneous de‐alloying process over time, and the initially formed CuxAu25?x(SR)18 nanoparticles were converted to pure Au25(SR)18. This de‐alloying process was not observed in the case of alloyed AgxAu25?x(SR)18 nanoparticles. This contrast can be attributed to the stability difference between CuxAu25?x(SR)18 and AgxAu25?x(SR)18 nanoparticles. These alloyed nanoparticles are promising candidates for applications such as catalysis.  相似文献   

14.
15.
High oxygen reduction (ORR) activity has been for many years considered as the key to many energy applications. Herein, by combining theory and experiment we prepare Pt nanoparticles with optimal size for the efficient ORR in proton‐exchange‐membrane fuel cells. Optimal nanoparticle sizes are predicted near 1, 2, and 3 nm by computational screening. To corroborate our computational results, we have addressed the challenge of approximately 1 nm sized Pt nanoparticle synthesis with a metal–organic framework (MOF) template approach. The electrocatalyst was characterized by HR‐TEM, XPS, and its ORR activity was measured using a rotating disk electrode setup. The observed mass activities (0.87±0.14 A mgPt?1) are close to the computational prediction (0.99 A mgPt?1). We report the highest to date mass activity among pure Pt catalysts for the ORR within similar size range. The specific and mass activities are twice as high as the Tanaka commercial Pt/C catalysis.  相似文献   

16.
Electrochemical characterization of palladium nanoparticles surrounded by a palladium oxide shell (Pd@PdO) is described from a combination of voltammetry plus electrochemical quartz crystal microbalance experiments at nanoparticle deposits on graphite electrodes in contact with aqueous H2SO4 and NaOH solutions. A method for determining the metal core size and oxide shell thickness of the Pd@PdO nanoparticles, based on a combination of conventional voltammetry of nanoparticles in DMSO solution and voltammetry of nanoparticle deposits in contact with 0.10 M aqueous NaOH solution, is described.  相似文献   

17.
Recently, magnetic nanoparticles and nanocomposite microspheres have attracted great interest for biomedical and technical application. Magnetic metal nanoparticles are of special interest due to their beneficial, size‐dependent magnetic properties. Superparamagnetic metal nanoparticles and mesoscale nanocomposite particles (viz. Co nanoparticles, Co@SiO2, and Co@SiO2@TiO2 particles) were obtained by a three‐step synthesis, involving consecutive steps of thermolysis and sol–gel procedures. A high‐resolution Schottky‐type field emission scanning electron microscope (FESEM) equipped with an energy dispersive X‐ray spectrometer was used to characterize intermediate and final products at the successive stages of synthesis. The samples were deposited on carbon‐coated transmission electron microscopy (TEM) grids (thin film technique) which afforded enhanced specimen contrast and reduced X‐ray background contribution in microanalysis. The FESEM was equipped with a special mounting device for these grids with an appropriate detector beneath. By this method, the samples, covering sizes from the nanometer to micron scale, could be characterized and analyzed by several imaging modes, viz. with standard SE and BSE detection mode and supplementary with low‐voltage scanning transmission mode (STEM‐in‐SEM) and fundamental information about particle size, morphology, and elemental distribution was obtained. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The microstructures of Pt/C and PtM/C (M?=?Ni, Cu, or Ag) electrocatalysts were studied using X-ray diffraction and transmission electron microscopy (TEM). The electrochemically active surface areas of the prepared materials were estimated by cyclic voltammetry in 1 M H2SO4. The materials, with metal contents ranging from 30 to 35 wt.%, were synthesized by chemically reducing the metal precursors in water–ethylene glycol solutions. The actual composition of the bimetallic nanoparticles corresponds to a theoretical (1:1) composition for the PtAg/C catalysts, whereas in the PtNi/C and PtCu/C materials, a portion of the alloying component exists in an oxide form. Decreasing the average metallic crystallite sizes from 3.5 to 1.6 nm does not increase the electrochemically active surface area. This apparent contradiction is because a majority of the PtNi and PtCu nanoparticles consist of 2–4 disordered crystallites. In addition, a portion of the PtNi or PtCu nanoparticle surface is covered by nickel or copper oxides, respectively. PtAg nanoparticles, which have a smaller size relative to other bimetallic particles according to the TEM data, are characterized by an intense platinum surface segregation. The agglomeration processes are lowest for the PtAg nanoparticles.  相似文献   

19.
New graphene oxide (GO)‐based hydrogels that contain vitamin B2/B12 and vitamin C (ascorbic acid) have been synthesized in water (at neutral pH value). These gel‐based soft materials have been used to synthesize various metal nanoparticles, including Au, Ag, and Pd nanoparticles, as well as nanoparticle‐containing reduced graphene oxide (RGO)‐based nanohybrid systems. This result indicates that GO‐based gels can be used as versatile reactors for the synthesis of different nanomaterials and hybrid systems on the nanoscale. Moreover, the RGO‐based nanohybrid hydrogel with Pd nanoparticles was used as an efficient catalyst for C? C bond‐formation reactions with good yields and showed high recyclability in Suzuki–Miyaura coupling reactions.  相似文献   

20.
Noble metals can be ionized by electrochemical corrosion and transported by electrospray ionization. Mass spectrometry (MS) showed solvated metal ions as the main ionic constituent of the sprayed droplets. Collection of the electrospray plume on a surface yielded noble metal nanoparticles (NPs) under ambient conditions. The NPs were characterized by several techniques. Under typical conditions, capped‐nanoparticle sizes averaged 2.2 nm for gold and 6.5 nm for silver. The gold nanoparticles showed high catalytic activity in the reduction of p‐nitrophenol by NaBH4. Efficient catalysis was also observed by simply directing the spray of solvated Au+ onto the surface of an aqueous p‐nitrophenol/NaBH4 mixture. Organometallic ions were generated by spiking ligands into the spray solvent: for example, CuI bipyridine cations dominated the spray during Cu electrocorrosion in acetonitrile containing bipyridine. This organometallic reagent was shown to be effective in the radical polymerization of styrene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号