首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A dual C?H/N?H dehydrogenative coupling of quinoline‐type N‐oxides with sulfoximines that leads to N‐(hetero)arylsulfoximines in high yields has been realized by using a catalytic amount of CuBr in air. The method does not require any additional ligand, base, reactivity modifier or oxidant and provides a practical route towards a series of sulfoximidoyl‐functionalized quinolines and derivatives.  相似文献   

4.
C−C coupling by transition metal catalyzed C−H activation has developed into a diverse area of research. The applicable catalysts are manifold, and the variety of products obtained range from basic chemicals to pharmaceuticals and building blocks for carbon networks. One reaction, in which several C−C bonds are formed under C−H activation of a methyl group, is the conversion of ortho-iodoanisole according to Equation (1).  相似文献   

5.
6.
The first example of cobalt‐catalyzed oxidative C?H/C?H cross‐coupling between two heteroarenes is reported, which exhibits a broad substrate scope and a high tolerance level for sensitive functional groups. When the amount of Co(OAc)2?4 H2O is reduced from 6.0 to 0.5 mol %, an excellent yield is still obtained at an elevated temperature with a prolonged reaction time. The method can be extended to the reaction between an arene and a heteroarene. It is worth noting that the Ag2CO3 oxidant is renewable. Preliminary mechanistic studies by radical trapping experiments, hydrogen/deuterium exchange experiments, kinetic isotope effect, electron paramagnetic resonance (EPR), and high resolution mass spectrometry (HRMS) suggest that a single electron transfer (SET) pathway is operative, which is distinctly different from the dual C?H bond activation pathway that the well‐described oxidative C?H/C?H cross‐coupling reactions between two heteroarenes typically undergo.  相似文献   

7.
The carbon‐carbon and carbon‐heteroatom bonds catalytic formation is among the most significant reactions in organic synthesis which extensively applied for synthesis of natural products, heterocycles, dendrimers, biologically active molecules and useful compounds. This review provides the latest advances in the preparation of graphene supported metal nanoparticles and their application in the catalytic formation of both carbon‐carbon (C−C) and carbon‐heteroatom (C−X) bonds including the Suzuki, Heck, Hiyama, Ullmann, Buchwald and Sonogashira coupling reactions. Numerous examples are given concerning the use of these catalysts in C−C and C−X coupling reactions along with the reliable and simple preparation methods of these catalysts, their characterization and catalytic properties and also the recycling possibilities.  相似文献   

8.
Palladium‐catalyzed regio‐ and diastereoselective C?H functionalization with bromoalkynes and electronically unbiased olefins is reported. The picolinamide directing group enables the formation of putative 5 and 6‐exo‐metallacycles as intermediates to afford monoalkynylated products in up to 91 % yield in a stereospecific fashion. The systematic study reveals that substrates with a wide range of substituents on the olefin and bromoalkyne coupling partners are tolerated. Chemoselective transformations were demonstrated for the obtained amides, olefins, and alkynes.  相似文献   

9.
Carboxylate esters have many desirable features as electrophiles for catalytic cross‐coupling: they are easy to access, robust during multistep synthesis, and mass‐efficient in coupling reactions. Alkenyl carboxylates, a class of readily prepared non‐aromatic electrophiles, remain difficult to functionalize through cross‐coupling. We demonstrate that Pd catalysis is effective for coupling electron‐deficient alkenyl carboxylates with arylboronic acids in the absence of base or oxidants. Furthermore, these reactions can proceed by two distinct mechanisms for C?O bond activation. A Pd0/II catalytic cycle is viable when using a Pd0 precatalyst, with turnover‐limiting C?O oxidative addition; however, an alternative pathway that involves alkene carbopalladation and β‐carboxyl elimination is proposed for PdII precatalysts. This work provides a clear path toward engaging myriad oxygen‐based electrophiles in Pd‐catalyzed cross‐coupling.  相似文献   

10.
The first electrochemical dehydrogenative C−C cross‐coupling of thiophenes with phenols has been realized. This sustainable and very simple to perform anodic coupling reaction enables access to two classes of compounds of significant interest. The scope for electrochemical C−H‐activating cross‐coupling reactions was expanded to sulfur heterocycles. Previously, only various benzoid aromatic systems could be converted, while the application of heterocycles was not successful in the electrochemical C−H‐activating cross‐coupling reaction. Here, reagent‐ and metal‐free reaction conditions offer a sustainable electrochemical pathway that provides an attractive synthetic method to a broad variety of bi‐ and terarylic products based on thiophenes and phenols. This method is easy to conduct in an undivided cell, is scalable, and is inherently safe. The resulting products offer applications in electronic materials or as [OSO]2− pincer‐type ligands.  相似文献   

11.
12.
Hydrocarbons are still the most important precursors of functionalized organic molecules, which has stirred interest in the discovery of new C?H bond functionalization methods. We describe herein a new step‐economical approach that enables C?C bonds to be constructed at the terminal position of linear alkanes. First, we show that secondary alkyl bromides can undergo in situ conversion into alkyl zinc bromides and regioconvergent Negishi coupling with aryl or alkenyl triflates. The use of a suitable phosphine ligand favoring Pd migration enabled the selective formation of the linear cross‐coupling product. Subsequently, mixtures of secondary alkyl bromides were prepared from linear alkanes by standard bromination, and regioconvergent cross‐coupling then provided access to the corresponding linear arylation product in only two steps.  相似文献   

13.
An efficient cobalt(III)‐catalyzed intramolecular cross‐dehydrogenative C?H/N?H coupling of ortho‐alkenylanilines has been developed utilizing O2 as a terminal oxidant. The developed reaction tolerates various reactive functional groups and allows the synthesis of diverse indole derivatives in good to excellent yields. The method was successfully extended to the synthesis of benzofurans through the intramolecular cross‐dehydrogenative C?H/O?H coupling of ortho‐alkenylphenols.  相似文献   

14.
Achieving site selectivity in carbon–hydrogen (C?H) functionalization reactions is a formidable challenge in organic chemistry. Herein, we report a novel approach to activating remote C?H bonds at the C5 position of 8‐aminoquinoline through copper‐catalyzed sulfonylation under mild conditions. Our strategy shows high conversion efficiency, a broad substrate scope, and good toleration with different functional groups. Furthermore, our mechanistic investigations suggest that a single‐electron‐transfer process plays a vital role in generating sulfonyl radicals and subsequently initiating C?S cross‐coupling. Importantly, our copper‐catalyzed remote functionalization protocol can be expanded for the construction of a variety of chemical bonds, including C?O, C?Br, C?N, C?C, and C?I. These findings provide a fundamental insight into the activation of remote C?H bonds, while offering new possibilities for rational design of drug molecules and optoelectronic materials requiring specific modification of functional groups.  相似文献   

15.
Efficient iron‐catalyzed homocoupling of terminal alkynes and cross‐dimerization of aryl acetylenes with trimethylsilylacetylene is reported. The complex [Fe(H)(BH4)(iPr‐PNP)] ( 1 ) catalyzed the (cross‐)dimerization of alkynes at room temperature, with no need for a base or other additives, to give the corresponding dimerized products with Z selectivity in excellent yields (79–99 %).  相似文献   

16.
Alkyl aryl ethers are an important class of compounds in medicinal and agricultural chemistry. Catalytic C(sp3)?O cross‐coupling of alkyl electrophiles with phenols is an unexplored disconnection strategy to the synthesis of alkyl aryl ethers, with the potential to overcome some of the major limitations of existing methods such as C(sp2)?O cross‐coupling and SN2 reactions. Reported here is a tandem photoredox and copper catalysis to achieve decarboxylative C(sp3)?O coupling of alkyl N‐hydroxyphthalimide (NHPI) esters with phenols under mild reaction conditions. This method was used to synthesize a diverse set of alkyl aryl ethers using readily available alkyl carboxylic acids, including many natural products and drug molecules. Complementarity in scope and functional‐group tolerance to existing methods was demonstrated.  相似文献   

17.
An improved method for the reductive coupling of aryl and vinyl bromides with alkyl halides that gave high yields for a variety of substrates at room temperature with a low (2.5 to 0.5 mol %) catalyst loading is presented. Under the optimized conditions, difficult substrates, such as unhindered alkenyl bromides, can be coupled to give the desired olefins with minimal diene formation and good stereoretention. These improved conditions also worked well for aryl bromides. For example, a gram‐scale reaction was demonstrated with 0.5 mol % catalyst loading, whereas reactions at 10 mol % catalyst loading completed in as little as 20 minutes. Finally, a low‐cost single‐component pre‐catalyst, (bpy)NiI2 (bpy=2,2′‐bipyridine) that is both air‐ and moisture‐stable over a period of months was introduced.  相似文献   

18.
In the presence of trialkylaluminum reagents, diverse aryl methyl ethers can be transformed into valuable products by C?O bond‐cleaving alkylation, for the first time without the limiting β‐hydride elimination. This new nickel‐catalyzed dealkoxylative alkylation method enables powerful orthogonal synthetic strategies for the transformation of a variety of naturally occurring and easily accessible anisole derivatives. The directing and/or activating properties of aromatic methoxy groups are utilized first, before they are replaced by alkyl chains in a subsequent coupling process.  相似文献   

19.
20.
A rhodium(III)‐catalyzed redox‐neutral coupling of α‐trifluoromethylacrylic acid with bezamides proceeds smoothly accompanied by amide‐directed C?H bond cleavage to produce β‐[2‐(aminocarbonyl)phenyl]‐α‐trifluoromethylpropanoic acid derivatives. One of the products can be transformed to a trifluoromethyl substituted heterocyclic compound. In addition, the redox‐neutral coupling of α‐trifluoromethylacrylic acid with related aromatic substrates possessing a nitrogen‐containing directing group can also be conducted under similar conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号