首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A model of mass transfer during gas absorption in gas-liquid plug flow accompanied by irreversible chemical reaction of the first order and zero order is suggested. The expressions for coefficients of mass transfer during chemical absorption from a single Taylor bubble are derived in the approximation of the thin concentration boundary layer in a liquid phase. Under the assumptions of a perfect liquid mixing in liquid plugs recurrent relations for the dissolved gas concentrations in the n-th liquid plug and mass fluxes from the n-th Taylor bubble are derived. The total mass fluxes in gas-liquid plug flow during chemical absorption are determined. In the limiting case of absorption without chemical reaction the derived formulas recover the expressions for mass transfer during physical absorption in gas-liquid plug flow. Theoretical results are compared with available experimental data.  相似文献   

2.
A model of heat transfer during gas hydrate formation at a gas-liquid interface in gas-liquid slug flow is suggested. Under the assumption of perfect mixing in liquid plugs, the recurrent relations for temperature in then-th liquid plug and heat and mass fluxes from then-th gas slug are derived. Total mass and heat fluxes in gas-liquid slug flow during gas hydrate formation are determined.  相似文献   

3.
PIV technique is applied for measurements of instant velocity distributions in a liquid film flowing down an inclined tube in the form of a wavy rivulet. An application of special optical calibration is applied to correct distortion effects caused by the curvature of the interface. A vortex flow of liquid is observed inside a wave hump in the reference system moving with wave phase velocity. Conditionally averaged profiles of longitudinal and transverse components of liquid velocity are obtained for different cross-sections of developed non-linear waves. It is shown that the increase in wave amplitude slightly changes the location of the vortex center. The analysis of modification of vortex motion character due to wavy flow conditions, such as tube inclination angle, film Reynolds number, wave excitation frequency, is fulfilled.  相似文献   

4.
Plug flow in microcapillaries or microchannels offers significant advantages for the development of microfluidic applications and recently triggers many interests and studies. Recirculation is formed within liquid plugs due to the presence of interfaces. This paper presents an analytical model to investigate the recirculation flow and the flow resistance in microcapillaries with circular cross section. A fourth order partial differential equation is used to model the Stokes flow within the liquid plug. The results of the flow field show that the flow pattern is affected by the plug length. The flow resistance is determined through the force balance of the liquid plug. The comparison of the flow field and the flow resistance from the analytical model and the experiments shows good agreement.  相似文献   

5.
The present study seeks to investigate horizontal bubbly-to-plug and bubbly-to-slug transition flows. The two-phase flow structures and transition mechanisms in these transition flows are studied based on experimental database established using the local four-sensor conductivity probe in a 3.81 cm inner diameter pipe. While slug flow needs to be distinguished from plug flow due to the presence of large number of small bubbles (and thus, large interfacial area concentration), both differences and similarities are observed in the evolution of interfacial structures in bubbly-to-plug and bubbly-to-slug transitions. The bubbly-to-plug transition is studied by decreasing the liquid flow rate at a fixed gas flow rate. It is found that as the liquid flow rate is lowered, bubbles pack near the top wall of the pipe due to the diminished role of turbulent mixing. As the flow rate is lowered further, bubbles begin to coalesce and form the large bubbles characteristic of plug flow. Bubble size increases while bubble velocity decreases as liquid flow rate decreases, and the profile of the bubble velocity changes its shape due to the changing interfacial structure. The bubbly-to-slug transition is investigated by increasing the gas flow rate at a fixed liquid flow rate. In this transition, gas phase becomes more uniformly distributed throughout the cross-section due to the formation of large bubbles and the increasing bubble-induced turbulence. The size of small bubbles decreases while bubble velocity increases as gas flow rate increases. The distributions of bubble size and bubble velocity become more symmetric in this transition. While differences are observed in these two transitions, similarities are also noticed. As bubbly-to-plug or bubbly-to-slug transition occurs, the formation of large elongated bubbles is observed not in the uppermost region of bubble layer, but in a lower region. At the beginning of transitions, relative differences in phase velocities near the top of the pipe cross-section to those near the pipe center become larger for both gas and liquid phases, because more densely packed bubbles introduce more resistance to both phases.  相似文献   

6.
Ultrasonic Doppler velocimetry in liquid gallium   总被引:5,自引:0,他引:5  
For the first time, flow velocity is measured in a vortex of liquid gallium, using the pulsed Doppler shift ultrasonic method. At the top of a copper cylinder filled with liquid gallium, we spin a disk and create a turbulent vortex with a dominant nearly axisymmetric velocity field with little variation in the axial direction. The velocity profiles are shown to be well resolved and in quantitative agreement with earlier observations. Reliable velocity measurements in liquid gallium could be obtained only after serious problems due to the formation of oxides were solved. This work opens the way to performing accurate velocity measurements in other liquid metals; preliminary results for liquid sodium are shown. Received: 14 January 2000 / Accepted: 12 January 2001  相似文献   

7.
This paper deals with the flow of solid/liquid mixtures through long-distance pipelines. Such flows can be destabilized by the formation of local plugs which may impede or even block the flow. Plugs may develop at the interface between regions of different mean concentration. The driving force for the development of such plugs is the existence of local gradients of the axial flux of solids.A mathematical model is developed which describes this mode of plug formation in slurry pipelines. Several assumptions and approximations enable us to reduce the 3D continuity equation of the solid particles to an effective 1D-equation that contains a concentration-dependent flux function. The latter equation is solved numerically.Illustrative calculations lead to the conclusion that the accumulation of material in a plug does not continue without limit but instead levels off at values that are pumpable under most practical conditions, provided that a certain margin of overdesign is in place.  相似文献   

8.
 We investigate the utility of particle imaging velocimetry (PIV) for performing kinematic measurements in wet aqueous foam with a liquid film beneath it. The flow velocities are measured near the walls of a square cross-section horizontal duct. The flow velocities are useful for validating the rheological models. We show that there is a discrepancy between the velocity profiles in the wet foam and the Bingham plastic model of flow. The velocity measurements reveal a more complex flow pattern, which may be analysed following three different regimes: a plug flow, a shear flow in a vertical plane and a three-dimensional shear flow. The transition between the plug flow and the shear flows may be explained by a shear-induced migration of bubbles. Received: 25 April 2000 / Accepted: 26 February 2001  相似文献   

9.
The duct flow of Bingham plastic fluids is analysed with the variational inequality-based finite element method. The problem of tracking the yield surface is solvable through the regularization technique which can be easily incorporated into the existing finite element code. The existence theorem of this method was established through the theory of variational inequalities. A small positive constant is added to the second shear rate invariant, resulting in an apparent viscosity of finite magnitude in the unyielding plug zone. This makes the minimization of the non-differential variational integral possible. In order to achieve convergence at small regularization parameter, a zero-order continuation is employed. It is also shown that a fine tessellation of the flow domain is necessary for tracking the yield surfaces unambiguously. Two classes of duct flow, namely axial flows in eccentric annuli and in an L-shaped duct, were investigated. In both cases it was easy to show the presence of the mobile plugs around the duct centres from the axial velocity profiles; however, the stagnant plugs at the narrow side in eccentric annuli with large eccentricity and near the apex of right-angled corners in an L-shaped duct could only be identified from the calculation of the distributions of the second shear rate or shear stress invariant. © 1997 John Wiley & Sons, Ltd.  相似文献   

10.
Fischer–Tropsch (F–T) synthesis is an important route to achieve the clean fuel production. The performance of gas–liquid separation equipment involving in the progressive condensation and separation of light and heavy hydrocarbons in the oil-gas products has become a bottleneck restricting the smooth operation of the F–T process. In order to remove the bottleneck, a gas–liquid vortex separator with simple structure, low pressure drop and big separation capacity was designed to achieve the efficient separation between gas and droplets for a long period. The RSM (Reynolds Stress Model) and DPM (Discrete Phase Method) are employed to simulate the flow characteristics and liquid distribution in the separator. The results show that the separation efficiency is influenced by the flow field and liquid phase concentration in the annular zone. The transverse vortex at the top of spiral arm entrains the droplets with small diameter into the upper annular zone. The entrained droplets rotate upward at an angle of about 37.4°. The screw pitch between neighbor liquid threads is about 0.3 m. There is a top liquid ring in the top of annular zone, where the higher is the liquid phase concentration, the lower is the separation efficiency. It is found that by changing the operating condition and the annular zone height the vortex can be strengthened but not enlarged by the inlet velocity. The screw pitch is not affected by both inlet velocity and annular zone height. The liquid phase concentration in the top liquid ring decreases with both the increases of inlet velocity and annular zone height. The total pressure drop is almost not affected by the annular zone height but is obviously affected by the inlet velocity. When the height of annular zone is more than 940 mm, the separation efficiency is not changed. Therefore, the annular zone height of 940 mm is thought to be the most economical design.  相似文献   

11.
In well construction, there are an increasing number of scenarios in which plugs are being set in annular geometries, whether as cement plugs or simply in the form of chemical packers. The generic reason for setting of such plugs is to hydraulically isolate different regions of a wellbore (or hole). An interesting practical problem in such situations is to predict the rheological properties that are necessary to prevent the annular plug fluid from flowing under the action of buoyancy, or indeed to predict how far the plug material may flow for given rheological properties. The answers to these questions provide valuable information for operational design. Mathematically, these flows are modeled using a Hele-Shaw style approximation of the narrow annulus. Since fluids used in the wellbore are non-Newtonian, typically shear-thinning and with a yield stress, the relationship between the local modified pressure gradient and the gap-averaged velocity field is nonlinear. If the yield stress of the fluids is sufficiently large, relative to the applied pressure over the gap, there is no flow. In the porous media context, there is direct analogy with problems of nonlinear seepage and in particular with non-Darcy flows with limiting pressure gradient. The study of such flows was both pioneered and developed by V.M. Entov, to whose memory this paper is dedicated.  相似文献   

12.
13.
单柱单锥型液—液旋流分离管内流场的LDV诊断   总被引:2,自引:0,他引:2  
应用二维激光多普勒仪(LDV)对一种单柱单锥型液-液旋流分离管内流场进行了测量,考察了流量、溢流比、压力比和气芯等参数对流场的影响。测量结果表明:切向速度分布呈典型的Rankine涡结构,沿轴向衰减很少,表明所用锥角是合适的;因该旋流管的水力直径较大,切向速度的总体水平较低,由于对了离特性带来了不利影响。此外,没有观察到切向速度分布的的双峰分布现象。轴向速度的总体水平较低,尤其是在锥形管的上游更为  相似文献   

14.
Measurement of bubbly two-phase flow parameters in a vertical pipe were performed. To keep the pipe Reynolds number below that for single-phase turbulent transition, a water-glycerin solution was used as the test liquid. Local void fraction and liquid velocity profiles along with the wall shear stress were measured by an electrochemical method. Experiments were made with bubbles of two different sizes. As the gas flow rate was increased, a gradual development of the liquid velocity profile from the parabolic Poiseuille flow to a flattened two-phase profile was observed. The evolution of the wall shear stress and of the velocity fluctuations were also quantified.Centre National de la Recherche Scientifique. Université Joseph Fourier, Institut National Polytechnique de Grenoble.  相似文献   

15.
This study addresses gas–liquid two-phase flows in polymer (PMMA) micro-channels with non-molecularly smooth and poorly wetting walls (typical contact angle of 65°) unlike previous studies conducted on highly wetting molecularly smooth materials (e.g., glass/silicon). Four fundamentally different topological flow regimes (Capillary Bubbly, Segmented, Annular, Dry) were identified along with two transitory ones (Segmented/Annular, Annular/Dry) and regime boundaries were identified from the two different test chips. The regime transition boundaries were influenced by the geometry of the two-phase injection, the aspect ratio of the test micro-channels, and potentially the chip material as evidenced from comparisons with the results of previous studies. Three principal Segmented flow sub-regimes (1, 2, and 3) were identified on the basis of quantified topological characteristics, each closely correlated with two-phase flow pressure drop trends. Irregularity of the Segmented regimes and related influencing factors were addressed and discussed. The average bubble length associated with the Segmented flows scaled approximately with a power law of the liquid volumetric flow ratio, which depends on aspect ratio, liquid superficial velocity, and the injection system. A simplified semi-empirical geometric model of gas bubble and liquid plug volumes provided good estimates of liquid plug length for most of the segmented regime cases and for all test-channel aspect ratios. The two-phase flow pressure drop was measured for the square test channels. Each Segmented flow sub-regime was associated with different trends in the pressure drop scaled by the viscous scale. These trends were explained in terms of the quantified flow topology (measured gas bubble and liquid plug lengths) and the number of bubble/plug pairs. Significant quantitative differences were found between the two-phase pressure drop in the polymer micro-channels of this study and those obtained from previous glass/silicon micro-channel studies, indicating that the effect of wall surface properties is important. Pressure drop trends on the capillary scale along gas bubbles extracted from the measurements in square micro-channels indicated a linear dependence on the Capillary number and did not agree with those predicted by highly idealized theory primarily because explicit and implicit assumptions in the theory were not relevant to practical conditions in this study.  相似文献   

16.
A comprehensively theoretical model is developed and numerically solved to investigate the phase distribution phenomena in a two-dimensional, axisymmetric, developing, two-phase bubbly flow. The Eulerian approach treats the fluid phase as a continuum and solved Eulerian conservation equations for the liquid phase. The Lagrangian bubbles are tracked by solving the equation of motion for the gas phase. The interphase momentum changes are included in the equations. The numerical model successfully predicts detailed flow velocity profiles for both liquid and gas phases. The development of the wall-peaking phenomenon of the void fraction and velocity profiles is also characterized for the developing flow. For 42 experiments in which the mean void fraction is less than 20 per cent, numerical calculations demonstrate that the predictions agree well with Liu's experimental data. © 1997 by John Wiley & Sons, Ltd.  相似文献   

17.
An experimental study of scalar mixing in a laminar vortex is presented for vortices generated between two gas streams flowing parallel to each other in a rectangular flow channel. An isolated line vortex is initiated on demand by momentarily increasing one stream velocity in relation to the other using an electromagnetically actuated piston. The temporal piston motion profile is tailored to generate vortices of different strengths corresponding to vortex Reynolds numbers, Re≡Γ/2πν=130–210. Evolution of mixing is monitored by laser-induced fluorescence of acetone vapor premixed into one of the gas streams as the vortex structure evolves with increasing downstream distance from its point of origin. Vortex is generated by pulsing either of the gas streams (seeded or unseeded stream). Vortex initiation process affects the abundance of the gas in the vortex core from the pulsed stream. Spatial mixing statistics are obtained by determining scalar concentration probability density functions (pdf) and the mean mixed fluid concentrations obtained from these pdfs. It is found that the interfacial area generation as a result of vortex kinematics and molecular diffusion along this interface are principally responsible for mixing. The mean mixed fluid concentration in the vortex interaction region scales with the product of vortex circulation and the elapsed time of interaction. These results are similar to those found in liquid mixing experiments, but the rate of mixing is significantly higher due to higher diffusivity of gases.  相似文献   

18.
A Ranque–Hilsch vortex tube is a long hollow cylinder with tangential nozzle placed near one end for injection of compressed air. The flow inside the vortex tube can be described as rotating air, which moves as a helical vortex flow. The peripheral flow moves toward the hot end, where the central part of the tube is blocked by a plug. The axial flow, which is forced back by the central part of the hot end plug, moves in the opposite direction toward the cold end. This paper focuses on the effect of the angle of rotating flow on the performance and efficiency of the Ranque–Hilsch vortex tube. To find the effect of vortex angle, different vortex angle generators were used and the best configuration was found.  相似文献   

19.
The two-phase flow of a hydrophobic ionic liquid and water was studied in capillaries made of three different materials (two types of Teflon, FEP and Tefzel, and glass) with sizes between 200 μm and 270 μm. The ionic liquid was 1-butyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide, with density and viscosity of 1420 kg m−3 and 0.041 kg m−1 s−1, respectively. Flow patterns and pressure drop were measured for two inlet configurations (T- and Y-junction), for total flow rates of 0.065–214.9 cm3 h−1 and ionic liquid volume fractions from 0.05 to 0.8. The continuous phase in the glass capillary depended on the fluid that initially filled the channel. When water was introduced first, it became the continuous phase with the ionic liquid forming plugs or a mixture of plugs and drops within it. In the Teflon microchannels, the order that fluids were introduced did not affect the results and the ionic liquid was always the continuous phase. The main patterns observed were annular, plug, and drop flow. Pressure drop in the Teflon microchannels at a constant ionic liquid flow rate, was found to increase as the ionic liquid volume fraction decreased, and was always higher than the single phase ionic liquid value at the same flow rate as in the two-phase mixture. However, in the glass microchannel during plug flow with water as the continuous phase, pressure drop for a constant ionic liquid flow rate was always lower than the single phase ionic liquid value. A modified plug flow pressure drop model using a correlation for film thickness derived for the current fluids pair showed very good agreement with the experimental data.  相似文献   

20.
The results of a numerical investigation of viscous vortex flow in a slightly divergent tube with thermal energy supplied to the flow are presented. The initial stage of vortex flow development is considered for two different longitudinal velocity distributions simulating the velocity profiles in jet-like and wake-like vortex flows in the vicinity of the vortex axis. The first type of flow can be considered as a model for the near-axis region of the vortex formed in the flow around a delta wing at incidence. The second type can serve as a model for the near-axis region of the trailing vortex downstream of a high-aspect-ratio wing. The development of the two flows is studied for a constant area tube, a slightly divergent tube, and in the case of thermal energy supply from a volume energy source at a constant wall temperature.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, pp. 90–97, September–October, 1996.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号