首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Porous copper oxide (CuO) hollow microspheres have been fabricated through a simple hydrothermal method using PS latex as templates. The as-obtained samples were characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometry (XRD) and Fourier transform infrared spectroscopy (FTIR). The influences of the mole ratio of Ethylenediamine (C2H8N2) and copper acetate (Cu(Ac)2·H2O), hydrothermal temperature and time on the size and morphologies of the final products have been investigated. The possible formation mechanism of porous CuO hollow microspheres has been proposed and the specific surface area of the hollow microspheres with 81.71 m2/g is measured by BET method. The band gap value calculated from a UV–vis absorption spectrum of porous CuO hollow microspheres is 2.71 eV. The as-synthesized product exhibits high photocatalytic activity during the photodegradation of an organic dyestuff, rhodamine B (RhB), under UV-light illumination.  相似文献   

2.
In this work, a template-free synthetic approach for generating single-crystalline hollow nanostructures has been described. Using the small optical band-gap cuprous oxide Cu(2)O as a model case, we demonstrate that, instead of normally known spherical aggregates, primary nanocrystalline particles can first self-aggregate into porous organized solids with a well-defined polyhedral shape according to the oriented attachment mechanism, during which chemical conversion can also be introduced. In contrast to the spherical aggregates, where the nanocrystallites are randomly joined together, the Cu(2)O nanocrystallites in the present case are well organized, maintaining a definite geometric shape and a global crystal symmetry. Due to the presence of intercrystallite space, hollowing and chemical conversion can also be carried out in order to create central space and change the chemical phase of nanostructured polyhedrons. It has been revealed that Ostwald ripening plays a key role in the solid evacuation process. Using this synthetic strategy, we have successfully prepared single-crystal-like Cu(2)O nanocubes and polycrystalline Cu nanocubes with hollow interiors. For the first time, we demonstrate that nanostructured polyhedrons of functional materials with desired interiors can be synthesized in solution via a combination of oriented attachment and Ostwald ripening processes.  相似文献   

3.
以碳球为模板,采用溶胶-凝胶法制备空心球状BiVO4,浸渍法制备CuO负载BiVO4.运用X射线衍射(XRD)、扫描电镜(SEM)、高分辨率透射电镜(HRTEM)、Brunauer-Emmett-Teller(BET)、塔菲尔(Tafel)、线性扫描(LSV)、光电转化效率(IPCE)、紫外-可见漫反射光谱(UV-Vis-DRS)等手段对催化剂进行表征.结果表明,空心球状BiVO4比表面积(10.24 m2?g-1)是无定型BiVO4(1.97 m2?g-1)的5.20倍.负载CuO后,与BiVO4形成p-n型异质结结构.其中,5%负载量的空心球状BiVO4具有最佳电化学性能,Tafel表征腐蚀电流密度(2.22μA?cm-2)为空心球状BiVO4(0.18μA?cm-2)的12.33倍,禁带宽度减小为2.30 eV.以甲苯为模型污染物研究催化剂对挥发性有机化合物(VOCs)的催化去除和矿化效果,5%CuO负载量的空心球状BiVO4光催化氧化能力最佳,可见光照6 h甲苯降解率达85.0%,矿化率达12.0%.  相似文献   

4.
The photoelectrochemical behaviour of copper covered with a passivating Cu2O layer has been studied in alkaline solution. Cu2O shows the characteristics of a p-type semiconductor with a band gap of 2.3 eV and a flatband potential of −0.28 V (SHE). Its photocurrent spectrum shows the characteristics of the absorption spectrum of Cu2O films. Several redox systems have been tested, including a CuO layer of the duplex film formed at sufficiently positive potentials. The cathodic photocurrent leads to a reduction of the CuO overlayer to Cu2O rather than to a self-reduction of Cu2O to Cu. For the duplex film a decrease of the band gap and an increase of the flatband potential is found, suggesting a participation of CuO in the generation of photoelectrons.  相似文献   

5.
Porous hybrid Cu2O/polypyrrole nanoflakes have been synthesized from solid CuO nanoplate templates through the pyrrole‐induced reductive transformation reaction at elevated temperature. The conversion mechanism involves the reductive transformation of CuO to Cu2O and the in situ oxidative polymerization of pyrrole to polypyrrole. In addition, the morphology of the as‐converted nanohybrids depends on the shape of the CuO precursors. The strategy enables us to transform single‐crystalline CuO nanosheets into hollow hybrid Cu2O/polypyrrole nanoframes. The ability to transform CuO and an organic monomer into porous hybrid materials of conducting polymer and Cu2O with macrosized morphological retention opens up interesting possibilities to create novel nanostructures. Electrochemical examinations show that these porous hybrid Cu2O/polypyrrole nanostructures exhibit efficient catalytic activity towards oxygen reduction reaction (ORR), excellent methanol tolerance ability, and catalytic stability in alkaline solution, thus making them promising nonprecious‐metal‐based catalysts for ORR in alkaline fuel cells and metal–air batteries.  相似文献   

6.
A convenient chemical conversion method that allows the direct preparation of nanocrystalline ZnE (E = O, S, Se) semiconductor spheres and hollow spheres as well as their core/shell structures is reported. By using monodisperse ZnO nanospheres as a starting reactant and in situ template, ZnS, ZnSe solid and hollow nanospheres, and ZnO/ZnS and ZnO/ZnSe core/shell nanostructures have been obtained through an ultrasound-assisted solution-phase conversion process. The formation mechanism of these nanocrystals is connected with the sonochemical effect of ultrasound irradiation. The photoluminescence and electrogenerated chemiluminescence properties of the as-prepared nanocrystals were investigated.  相似文献   

7.
用XPS测定了LnCu2O4(Ln=Gd, Nd)的内层和价层电子能谱,观察到LnCu2O4中稀土金属的3d电子结合能比相应的稀土金属简单氧化物的3d结合能低0.8~0.9 eV,而Cu的2p电子结合能比CuO的高0.4~0.5 eV,因此推断在LnCu2O4的Ln-O-Cu链中存在Cu→O→Ln电荷转移.XPS分析还表明LnCu2O4的Cu原子上有较低的电荷密度,但不存在混合价态.此外,通过比较价电子能谱,发现NdCu2O4的Ln 4f Cu 3d O 2p价带中心比GdCu2O4的价带中心向Fermi能级移近了3.4 eV,而且NdCu2O4的价带谱更窄.  相似文献   

8.
用 XPS测定了 LnCu2O4(Ln=Gd, Nd)的内层和价层电子能谱,观察到 LnCu2O4中稀土金属的 3d电子结合能比相应的稀土金属简单氧化物的 3d结合能低 0.8~ 0.9 eV,而 Cu的 2p电子结合能比 CuO的高 0.4~ 0.5 eV,因此推断在 LnCu2O4的 Ln- O- Cu链中存在 Cu→ O→ Ln电荷转移 .XPS分析还表明 LnCu2O4的 Cu原子上有较低的电荷密度,但不存在混合价态 .此外,通过比较价电子能谱,发现 NdCu2O4的 Ln 4f Cu 3d O 2p价带中心比 GdCu2O4的价带中心向 Fermi能级移近了 3.4 eV,而且 NdCu2O4的价带谱更窄 .  相似文献   

9.
Temperature-programmed reduction (TPR), oxidation (TPO), and desorption (TPD) studies were performed on three copper-ceria mixed oxide samples having the same nominal composition, Cu0.15Ce0.85O(2-y), but prepared in three different ways: by co-precipitation, the sol-gel peroxide route, and the sol-gel citric acid route. The obtained results reveal that despite a drastic initial drop in specific surface area after consecutive redox cycles, the hydrogen consumption remains constant. This is because CuO is highly dispersed over the surface of CeO2 nanocrystallites and remains highly dispersed even after the agglomeration of CeO2 nanocrystallites in a denser secondary structure. The dispersed CuO is reduced to Cu(0) during the TPR, forming agglomerated metal particles on the surface of partially reduced CeO2. However, after subsequent temperature-programmed oxidation all the Cu(0) is oxidized back into CuO and redispersed over the CeO2 crystallites.  相似文献   

10.
CuO hollow microspheres have been fabricated through a simple hydrothermal method in the presence of cetyltrimethylammonium bromide (CTAB). The products were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The effects of reaction temperature, surfactant, and the molar ratio of Urea/Cu(Π) on the morphologies of the resulting products were investigated. The possible formation mechanism of CuO hollow dandelion-like architectures was proposed. The hierarchical CuO hollow microspheres exhibited a high photocatalytic activity for decolorization of Rhodamine B (RhB) under UV-light illumination.  相似文献   

11.
A reverse cation-exchange approach for the synthesis of hollow PbSe nanospheres is successfully established. This route involves a new strategy of a stepwise, in-situ template-based evolution from spherical amorphous Se colloids to Se/Ag(2)Se core/shell colloids, then to hollow PbSe nanospheres. Se colloids are prepared as the initial product by utilizing the chelation of ethylenediamine to bulk Se. They are converted into Se/Ag(2)Se core/shell colloids through the reaction with Ag(+) in ethylene glycol. During the conversion from Ag(2)Se shell to PbSe shell, a small amount of tributylphosphine is crucial as the capping agent. The characterization results, including XRD, SEM, TEM, HRTEM, and EDX, reveal that hollow PbSe nanospheres with polycrystalline and cubic structure are prepared. The corresponding optical band gap is calculated to be 0.56 eV. This conformation is potentially beneficial to the improvement concerning the applications of PbSe nanostructures.  相似文献   

12.
A Cu(2)S-CuInS(2)-ZnSe quantum dot (QD)-sensitized solar cell with cascaded energy gap structures has been fabricated. Under simulated illumination (AM 1.5, 100 mW cm(-2)), the best device is obtained with a Cu(2)S-CuInS(2)-ZnSe QD-sensitized solar cell, yielding a power conversion efficiency of 2.52%.  相似文献   

13.
光催化分解水制H2和光催化还原CO2是解决能源危机和全球变暖的有效途径.但是,由于粉末光催化剂存在回收效率低的问题,因而光催化成本很高.而磁性光催化剂便于回收和重复利用,因此人们把目光转向具有磁性的非光催化剂材料,试图通过改性使得磁性材料具有合适的水分解或者还原CO2的氧化还原电位.同时,对具有光催化活性但是没有磁性的材料进行磁化改性可以得到新型的磁性光催化剂.本文通过对本身具有磁性的NiO材料进行Cu掺杂能带调整,使调整后的NiO具有合适的氧化还原电位;对本身具有良好光催化氧化还原电位的CuO材料进行Ni掺杂磁化调整,使磁化后的CuO既有良好的氧化还原电位又有磁性.最终两种材料经过掺杂变成磁性光催化材料,既有较好的光催化性能,又可高效回收,因此有望在光催化领域具有潜在的应用前景.LSDA(局域自旋密度近似)+U(有效库仑相关能)计算方法能够很好地给出磁矩和禁带宽度等电子结构性质.本文通过LSDA+U计算方法对具有磁性的宽禁带半导体材料NiO进行电子结构改性研究,希望通过降低其禁带宽度、调整其氧化还原电位使之对太阳光有响应.因其同时具有磁性便于回收,使得光催化分解水制H2和光催化还原CO2成本高的问题得到解决.对NiO的磁胞进行了Cu掺杂计算,结果发现Cu的掺杂几乎没有引起NiO空间结构的变化,这是因为Cu和Ni的离子半径相近.通过对电子结构的计算发现掺杂体系的禁带变窄,并且在禁带中间出现了两条杂质能级,该杂质能级是由掺杂原子Cu 3d态组成.杂质能级的出现能够降低光生载流子在带隙中的复合,从而提高光催化效率.计算结果同时表明,Cu掺杂的NiO系统具有一个1μB的净磁矩,即Cu的掺杂使得NiO显示出磁性,而Ni的磁矩在掺杂前后几乎保持不变,由纯相的1.67μB增加到掺杂体系中的1.70μB.由于CuO本身低指数(111)面和(011)面具有合适的分解水制H2和还原CO2的氧化还原电位,如果对CuO进行磁化改性,可以使光催化剂CuO同时带有磁性,便于回收再利用.本文对CuO磁胞进行了Ni的掺杂计算.结果表明,由于离子半径相近,Ni掺杂几乎没有引起CuO空间结构的变化.掺杂后的体系具有一个1.66μB的净磁矩,同时Ni的掺杂引起多个杂质能级出现,靠近价带的杂质能级由Cu 3d态组成,而在导带底位置出现的杂质能级主要由Ni 3d态组成.整个能带向高能级方向平移.  相似文献   

14.
Copper oxide(CuO),due to its low cost,good chemical and physical stability,has recently been given special attention as a potential candidate for antibacterial agents.However,developing novel CuO nanocomposites with improved antibacterial property and unraveling the interface promotion mechanism has been a fundamental challenge for decades.Herein,well-defined CuO/graphdiyne(CuO/GDY)nanostructures with uniformly anchored CuO nanoparticles(ca.4.5 nm)have been fabricated.The CuO/GDY nanostructure exhibited superior E.coli inactivation efficiency,which is nearly 19 times and 7.9 times higher than the bare GDY and commercial CuO,respectively.The improved E.coli inactivation performance was mainly due to the increased reactive O2-species generated by the activation of molecular O2 over CuO/GDY surface.These findings demonstrate the efficient antibacterial activity of well-defined CuO/GDY nanostructures and provide insights on the development of efficient GDY-based antibacterial materials.  相似文献   

15.
Time-resolved X-ray diffraction, X-ray absorption fine structure, and first-principles density functional calculations were used to investigate the reaction of CuO and Cu(2)O with H(2) in detail. The mechanism for the reduction of CuO is complex, involving an induction period and the embedding of H into the bulk of the oxide. The in-situ experiments show that, under a normal supply of hydrogen, CuO reduces directly to metallic Cu without formation of an intermediate or suboxide (i.e., no Cu(4)O(3) or Cu(2)O). The reduction of CuO is easier than the reduction of Cu(2)O. The apparent activation energy for the reduction of CuO is about 14.5 kcal/mol, while the value is 27.4 kcal/mol for Cu(2)O. During the reduction of CuO, the system can reach metastable states (MS) and react with hydrogen instead of forming Cu(2)O. To see the formation of Cu(2)O, one has to limit the flow of hydrogen, slowing the rate of reduction to allow a MS --> Cu(2)O transformation. These results show the importance of kinetic effects for the formation of well-defined suboxides during a reduction process and the activation of oxide catalysts.  相似文献   

16.
A remarkable variety of conducting states has been found in RuSr2(R2-xCex)Cu2O10-delta ruthenocuprates by tuning the properties of the magnetic CuO2 and RuO2 layers through small changes in the chemistry of the (R,Ce)2O2-delta slab. Both the R3+ cation size and the charge transfer determined by the R/Ce ratio and the oxygen deficiency delta are important controlling parameters that tune ground-state properties from positive magnetoresistive to negative magnetoresistive to superconducting.  相似文献   

17.
CuO powders with a high specific surface area are shown to be able to produce H(2)O(2) in aqueous solution under simulated light irradiation. The highest rate of peroxide production was observed under mild experimental conditions using O(2) and a large surface area photocatalyst CuO irradiated with a solar simulator having light intensities between 60 and 90 mW/cm(2). The CuO employed had a specific surface area (SSA) of 64.8-70.1 m(2)/g and was prepared in a tubular furnace by controlled thermal decomposition of precipitated copper oxalate. The CuO particles produced were 1 mum cubes with primary particles around 15 nm. No peroxide was produced under the same conditions with commercial CuO, with SSA 200 times lower. The CuO synthesized during this work was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), specific surface area [Brunauer-Emmett-Teller (BET)], porosity, and X-ray photoelectron spectroscopy (XPS). From XPS, it was observed that only Cu(II) was present in the unused and used CuO. This indicates that the redox transient species involving other Cu oxidation states disappear very fast during the reaction, regenerating Cu(II) during H(2)O(2) production. Diverse experiments provided some evidence for the possible interfacial reaction mechanism leading to H(2)O(2), following the initial step of O(2)(-)(.) formation on the CuO surface under irradiation with photons, with energies exceeding the band gap of CuO. A photocatalyzed degradation of a concentrated 4-chlorophenol (4-CP) solution was observed under solar-simulated light in the presence of CuO.  相似文献   

18.
It is well-known that inorganic nanocrystals are a benchmark model for nanotechnology, given that the tunability of optical properties and the stabilization of specific phases are uniquely possible at the nanoscale. Copper (I) oxide (Cu(2)O) is a metal oxide semiconductor with promising applications in solar energy conversion and catalysis. To understand the Cu/Cu(2)O/CuO system at the nanoscale, we have developed a method for preparing highly uniform monodisperse nanocrystals of Cu(2)O. The procedure also serves to demonstrate our development of a generalized method for the synthesis of transition metal oxide nanocrystals. Cu nanocrystals are initially formed and subsequently oxidized to form highly crystalline Cu(2)O. The volume change during phase transformation can induce crystal twinning. Absorption in the visible region of the spectrum gave evidence for the presence of a thin, epitaxial layer of CuO, which is blue-shifted, and appears to increase in energy as a function of decreasing particle size. XPS confirmed the thin layer of CuO, calculated to have a thickness of approximately 5 A. We note that the copper (I) oxide phase is surprisingly well-stabilized at this length scale.  相似文献   

19.
We have demonstrated a simple fabrication of hollow nanoparticles by halide-induced corrosion oxidation with the aid of surfactants. Cuprous oxide Cu2O nanoshells can be generated by simply mixing Cu nanoparticles with alkyltrimethylammonium halides at 55 degrees C for 16 min. The hollowing mechanism proposed is that absorption of surfactants onto the Cu surface facilitates the formation of the void interior through an oxidative etching process. Upon extending the reaction up to 4 h, fragmentation, oxidation, and self-assembly were observed and the CuO ellipsoidal structures were formed. The headgroup lengths of the surfactants influenced the degree of CuO ellipsoidal formation, whereby longer surfactants favored the generation of ellipsoids. Optical absorption measured by UV-visible spectroscopy was used to monitor both oxidation courses of Cu-->Cu2O and Cu2O-->CuO and to determine the band-gap energies as 2.4 eV for Cu2O nanoshells and 1.89 eV for CuO ellipsoids. For the contact-angle measurements, the wettability changed from hydrophilicity (18 degrees) to hydrophobicity (140 degrees) as the Cu2O nanoshells shifted to CuO ellipsoids.  相似文献   

20.
Metallic Cu is considered as the promising functional material owing to its high conductivity and harmlessness. Here, metallic Cu which presents a unique interconnected and continuous structure (Cu superstructure) is prepared using Magnolia grandiflora leaves as the biomass reductant, a green process which avoided the release of harmful gases and massive energy consumption. What's more, Cu/CuO, Cu/Cu2O, and CuS nanosheets with different sizes were fabricated using Cu superstructure as the substrate via facile methods, and the morphology is regulated by controlling the relevant factors. The electrochemical sensors based on the three derivations were fabricated to study the sensing performance of glucose. The unique structure of nanosheets encapsulating Cu superstructure guarantees the excellent conductivity of Cu/CuO and Cu/Cu2O composites. Moreover, the electrochemical stability is improved owing to the nanosheet protective layer. Although no metallic Cu was maintained in CuS, the integrated multilayer nanosheets endow CuS with short channels for fast interlayer electronic transmission and with structural stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号