首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
The first example of organostibine mediated controlled/living random copolymerization of styrene (St) and methyl methacrylate (MMA) was achieved by heating a solution of St/MMA/organostibine mediator at 100 °C or St/MMA/organostibine mediator/AIBN with various monomer feed ratios at 60 °C. The addition of AIBN significantly decreased the reaction temperature and enhanced the rate of copolymerization. The structure of poly(St-co-MMA) was verified by 1H NMR. The reactivity ratios at 60 °C were determined by the extended Kelen-Tüd?s method to be γSt = 0.40 and γMMA = 0.44. The ln([M]0/[M]) increased linearly with increasing reaction time. The number-average molecular weights of poly(St-co-MMA) increased linearly with conversion. Poly(St-co-MMA) with expected number-average molecular weight and low polydispersity index was formed. The living characteristic was further confirmed by chain-extension of poly(St-co-MMA) to form poly(St-co-MMA)-b-PMMA.  相似文献   

2.
In the reversible addition–fragmentation transfer (RAFT) copolymerization of two monomers, even with the simple terminal model, there are two kinds of macroradical and two kinds of polymeric RAFT agent with different R groups. Because the structure of the R group could exert a significant influence on the RAFT process, RAFT copolymerization may behave differently from RAFT homopolymerization. The RAFT copolymerization of methyl methacrylate (MMA) and styrene (St) in miniemulsion was investigated. The performance of the RAFT copolymerization of MMA/St in miniemulsion was found to be dependent on the feed monomer compositions. When St is dominant in the feed monomer composition, RAFT copolymerization is well controlled in the whole range of monomer conversion. However, when MMA is dominant, RAFT copolymerization may be, in some cases, out of control in the late stage of copolymerization, and characterized by a fast increase in the polydispersity index (PDI). The RAFT process was found to have little influence on composition evolution during copolymerization. The synthesis of the well‐defined gradient copolymers and poly[St‐b‐(St‐co‐MMA)] block copolymer by RAFT miniemulsion copolymerization was also demonstrated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6248–6258, 2004  相似文献   

3.
The emulsion atom transfer radical block copolymerization of 2‐ethylhexyl methacrylate (EHMA) and methyl methacrylate (MMA) was carried out with the bifunctional initiator 1,4‐butylene glycol di(2‐bromoisobutyrate). The system was mediated by copper bromide/4,4′‐dinonyl‐2,2′‐bipyridyl and stabilized by polyoxyethylene sorbitan monooleate. The effects of the initiator concentration and temperature profile on the polymerization kinetics and latex stability were systematically examined. Both EHMA homopolymerization and successive copolymerization with MMA proceeded in a living manner and gave good control over the polymer molecular weights. The polymer molecular weights increased linearly with the monomer conversion with polydispersities lower than 1.2. A low‐temperature prepolymerization step was found to be helpful in stabilizing the latex systems, whereas further polymerization at an elevated temperature ensured high conversion rates. The EHMA polymers were effective as macroinitiators for initiating the block polymerization of MMA. Triblock poly(methyl methacrylate–2‐ethylhexyl methacrylate–methyl methacrylate) samples with various block lengths were synthesized. The MMA and EHMA reactivity ratios determined by a nonlinear least‐square method were ~0.903 and ~0.930, respectively, at 70 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1914–1925, 2006  相似文献   

4.
Methyl methacrylate (MMA) and styrene (St) have been radically polymerized in the presence of chlorotrimethylsilane and CuCl/N,N,N′,N″,N″-pentamethyldiethyltriamine (Me3SiCl/CuCl/PMDETA). An analysis of the resultant polymers by 1H NMR discloses terminal silyl group and chlorine atom in all the obtained polymers. Kinetics studies have been carried out by measuring monomer conversions and polymer molecular weights against polymerization time. The results indicate that, for both MMA and St polymerizations, the monomer conversions exhibit a quasi-linear relationship with polymerization time, and the polymer number-average molecular weight (Mn) also increases with monomer conversion. The molecular weights of both PS and PMMA exceed one hundred thousand. Regardless of molecular weight, all the polymers show narrow molecular distributions (Mw/Mn = 1.2-1.5). These polymerization reactions are speculated to follow a mechanism similar to that of atom transfer radical polymerization (ATRP).  相似文献   

5.
The effects of triphenyl phosphite (TPP) on the radical polymerization of styrene (St) and methyl methacrylate (MMA) initiated with α,α,-azobisisobutyronitrile (AIBN) was investigated at 50°C. The rate of polymerization of St and MMA at a constant concentration of TPP was found to be proportional to the monomer concentration and the square root of the initiator concentration. The rate of polymerization and the degree of polymerization of both St and MMA increased with increasing TPP concentration. The accelerating effect was shown to be due to the decrease of the termination rate constant kt with an increase in the viscosity of the polymerization systems. The chain transfer constant Ctr of TPP in St and MMA systems was determined from the degree of polymerization system. The Ctr of TPP was almost zero in the St system and 6.5 × 10?5 in the MMA system.  相似文献   

6.
Aqueous acrylic‐polyurethane (AC–PU) hybrid emulsions were prepared by semibatch emulsion polymerization of methyl methacrylate (MMA) in the presence of four polyurethane (PU) dispersions. The PU dispersions were synthesized with isophorone diisocyanate (IPDI), 1000 and 2000 molecular weight (MW) poly(neopentyl) adipate, 1000 MW polytetramethyleneetherglycol, butanediol (BD), and dimethylol propionic acid (DMPA). MMA was added in the monomer emulsion feed. We studied the effect of the use of different PU seed particles on the rate of polymerization, the particle size and distribution, the number of particles, and the average number of radicals per particle. The PU rigidity was controlled by varying the polyol chemical structure, the polyol MW (Mn), and by adding BD. The monomer feed rate was varied to study its influence on the process. It was observed that the PU particles that had been prepared with a higher MW polyol swelled better with MMA before the monomer‐starved conditions occurred. There seemed to be no significant discrepancies between the series with different PU seeds in the monomer‐starved conditions. The overall conversion depended on the monomer addition rate, and the polymerization rate acquired a constant value that was comparable to the value of the monomer addition rate. The instantaneous conversion increased slightly. The average particle size increased, and the total particle number in the reactor was constant and similar to the number of PU particles in the initial charge. The average number of radicals per particle increased. The differences between the system with a constant particle number and average number of radicals per particle and the system with a fixed radical concentration are discussed. The semibatch emulsion polymerization of MMA in the presence of PU particles studied was better compared to the system with a fixed radical concentration. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 844–858, 2005  相似文献   

7.
Methyl methacrylate (MMA) and styrene (St) copolymerize in the presence of zinc chloride at 3°C under photoirradiation. The contents of methyl methacrylate in the copolymers obtained at a [ZnCl2]/[MMA] molar ratio of 0.4 are systematically larger than 53 mole %, which is the limiting value at a small feed ratio of methyl methacrylate. The resulting copolymers are confirmed as the sole products and not the mixtures by thin layer chromatography. The effect of dilution of the monomer feed mixture with toluene on copolymer composition suggests that it depends chiefly on the feed concentration of styrene and hardly at all on monomer feed ratios. Copolymerizations are also conducted in the presence of stannic chloride at ?17°C under photoirradiation and in the presence of ethylaluminium sesquichloride at 0°C with spontaneous initiation. The contents of methyl methacrylate in both copolymers obtained at feed ratios lower than 60 mole % almost correspond to the 1:1 alternating copolymer and increase systematically with higher feed ratios. The systematic deviations of copolymer composition obtained in the presence of metal halides are reasonably interpreted by the participation of the binary molecular complex composed of metal halide and methyl methacrylate in the polymerization of the ternary molecular complex composed of metal halide, methyl methacrylate, and styrene.  相似文献   

8.
Bis(aqua)bis((difluoroboryl)dimethylglyoximate)cobalt(II) (COBF) has proven to be a very effective catalytic chain transfer agent in the copolymerization of MA and MMA. The chain transfer activity depends on the fraction of MMA in the monomer feed and the total radical concentration. The polymerization can be described by a model that combines features of catalytic chain transfer for MMA homopolymerization and cobalt mediated controlled radical polymerization of MA. According to the model part of the COBF is covalently bonded to MA‐ended polymeric radicals and cannot take part in the chain transfer step. The model can also account for the observed inhibition time that occurs at high chain transfer agent concentration and low fraction of MMA in the monomer feed.  相似文献   

9.
Materials bearing ionic monomers were obtained through free radical terpolymerization of methyl methacrylate (MMA), poly(ethylene glycol) methyl ether methacrylate (PMEM) or poly(ethylene glycol) ethyl ether methacrylate (PEEM) with methacrylic acid (MA) and sodium styrene sulfonate (NaSS). The reactions were carried out in dimethyl sulfoxide using azobis(isobutyronitrile) as initiator. The reactivity ratios of the different couple of monomers were calculated according to the general copolymerization equation using the Finnemann-Ross, Kelen-Tüdos and Tidwell-Mortimer methods. The values of the reactivity ratios indicate that the different monomer units can be considered as randomly distributed along the chains for terpolymerizations of MMA, PMEM or PEEM with MA and NaSS. The average composition of the comonomers in the different terpolymers were calculated, showing a good agreement between the experimental and theoretical compositions. The instantaneous compositions are constant until about 70% of conversion. For higher conversions, the insertion of ionic monomers increases or decreases according to the system studied.  相似文献   

10.
Free radical copolymerization of styrene/methyl methacrylate (S/MMA) and butyl acrylate/methyl methacrylate (BA/MMA) in the presence of n-dodecanthiol (DDT) has been studied at 60°C in a 3 mol/L benzene solution using 2,2′-azobis(isobutyronitrile) (AIBN) as initiator. Overall chain transfer constant to DDT has been determined for both copolymerization systems, as a function of monomer feed composition using complete molecular weight distribution and the Mayo method. Overall transfer coefficients have values which are dependent on both monomer feed composition and individual comonomer transfer values. Composition, sequence distribution, and stereoregularity of copolymers obtained are, in our experimental conditions, independent of copolymer molecular weight. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2913–2925, 1998  相似文献   

11.
Chain transfer constants to monomer have been measured by an emulsion copolymerization technique at 44°C. The monomer transfer constant (ratio of transfer to propagation rate constants) is 1.9 × 10?5 for styrene polymerization and 0.4 × 10?5 for the methyl methacrylate reaction. Cross-transfer reactions are important in this system; the sum of the cross-transfer constants is 5.8 × 10?5. Reactivity ratios measured in emulsion were r1 (styrene) = 0.44, r2 = 0.46. Those in bulk polymerizations were r1 = 0.45, r2 = 0.48. These sets of values are not significantly different. Monomer feed compcsition in the polymerizing particles is the same as in the monomer droplets in emulsion copolymerization, despite the higher water solubility of methyl methacrylate. The equilibrium monomer concentration in the particles in interval-2 emulsion polymerization was constant and independent of monomer feed composition for feeds containing 0.25–1.0 mole fraction styrene. Radical concentration is estimated to go through a minimum with increasing methyl methacrylate content in the feed. Rates of copolymerization can be calculated a priori when the concentrations of monomers in the polymer particles are known.  相似文献   

12.
The radical copolymerization of styrene and n‐butyl methacrylate mediated by 1‐phenyl‐1‐(2′,2′,6′,6′‐tetramethyl‐1′‐piperidinyl‐oxy)ethane in bulk at 125 °C has been analyzed over a wide range of conversions and monomer feed compositions. Monomer reactivity ratios have been determined, and the Mayo–Lewis terminal model provides excellent predictions for the variations of the intermolecular structure over the entire conversion range. The kinetic analysis of this copolymerization system indicates an apparent propagation rate coefficient independent of the monomer feed composition as well as a limiting conversion that decreases as the styrene monomer feed decreases. This fact is attributed to side reactions leading to unsaturated end groups and the accumulation of nonactive adducts of n‐butyl methacrylate. The number‐average molecular weights linearly increase with conversion, and the copolymers present narrow molecular weight distributions. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2750–2758, 2002  相似文献   

13.
以2-溴代异丁酸乙酯(EBiB)为引发剂,CuBr/CuBr2/1,10-邻二氮菲(phen)为复合催化剂,十二烷基磺酸钠(SLS)为乳化剂,考察了水分散体系中苯乙烯(St)和甲基丙烯酸甲酯(MMA)的原子转移自由基共聚合的可控性和相对反应活性.在此基础上,通过反应进料法在水分散体系中进行了St和MMA的梯度共聚合,反应表现出“活性”聚合的特征,即所得共聚物的数均分子量随着单体转化率的增加而增大,分子量分布较窄(Mw/Mn<1.50).用1HNMR跟踪分析了聚合反应过程中共聚物微观组成的变化规律,结果表明,共聚物链中MMA链节的累积含量和瞬时含量都随着共聚物相对链长的增加而增加,即随着聚合物相对链长的增加共聚物的微观组成从St链节占主导地位逐渐变化为以MMA链节占主导地位,表明确实形成了St和MMA的梯度或渐变共聚物.  相似文献   

14.
Copolymers of a liquid crystalline monomer, 2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene (MPCS), with St and MMA were prepared by free radical polymerization at low conversion in chlorobenzene with 2,2′‐azobisisobutyronitrile (AIBN) as initiator. The copolymers of poly(MPCS‐co‐St) and poly(MPCS‐co‐MMA) were characterized by 1H NMR and GPC. The monomer reactivity ratios were determined by using the extended Kelen–Tudos (EKT) method. Structural parameters of the copolymers were obtained from the possibility statistics and monomer reactivity ratios. The influence of MPCS content in copolymers on the glass transition temperatures of copolymers was investigated by DSC. The thermal stabilities of the two copolymer systems increased with an increase of the molar fraction of MPCS in the copolymers. The liquid crystalline behavior of the copolymers was also investigated using DSC and POM. The results revealed that the copolymers with high MPCS molar contents exhibited liquid crystalline behaviors. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2666–2674, 2005  相似文献   

15.
Effects of pentavalent phosphorus compounds on the radical polymerization of methyl methacrylate (MMA) and styrene (St) were studied. Phosphorus oxychloride (Cl3P?O) and phenyl-phosphonic dichloride (C6H5Cl2P?O) were used. Polymerization was carried out in benzene at 50°C by the standard solution method, α,α′-azobisisobutyronitrile (AIBN) being used as the initiator. In the polymerization of MMA, both phosphorus compounds increased the rate of polymerization. NMR spectral data suggested that this increasing effect was due to the complex formation between each phosphorus compound and MMA monomer. In the case of polymerization of St, NMR data also indicated the formation of a complex between the phosphorus compound and St monomer. Both phosphorus compounds showed an increasing effect for the rate of polymerization. Though these increasing effects could be explained by the complex formation, the polymerization of St in the presence of Cl3P?O was especially found to be due to the cationic polymerization initiated simultaneously by Cl3P?O in addition to the radical polymerization. These phosphorus compounds acted as chain-transfer agents in both polymerization systems. The parameters (Qtr,etr) which indicate the reactivity of a chain-transfer agent were calculated from the observed values of chain-transfer constant for both polymerization systems.  相似文献   

16.
The photoradical polymerization of methyl methacrylate (MMA) was performed in an acetonitrile solution at room temperature using (2RS,2′RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile) as the initiator, 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl as the mediator, and (4-tert-butylphenyl)diphenylsulfonium triflate as the photo-acid generator. This solution polymerization showed a non-steady-state during the very early stage followed by a steady-state. The polymerization produced oligomers with several thousand molecular weights at a very low conversion under the non-steady-state. It was confirmed that the polymerization proceeded in accordance with a living mechanism under the steady-state based on the linear correlations for both the first-order time-conversion plots and the conversion–molecular weight plots. The molecular weight distributions of the polymers obtained in the steady-state were approximately 1.8. The block copolymerization with isopropyl methacrylate ( i PMA) demonstrated that the growing polymer chain ends of the MMA prepolymer were stabilized even at a high conversion and efficiently initiated the i PMA polymerization.  相似文献   

17.
The ultrasonically initiated emulsion polymerization of methyl methacrylate (MMA) was investigated. Experimental results show that sodium dodecyl sulfonate (SDS) surfactant plays a very important role in obtaining a high polymer yield, because in the absence of SDS, monomer conversion is near zero. Thus, the surfactant serves as an initiator and as interfacial modifier in this system (MMA/H2O), and the monomer conversion increases significantly with increasing SDS concentration. An increase in the reactor temperature also leads to an increase in the monomer conversion. An appropriate increase in the N2 purging rate also leads to higher conversion. The conversion of MMA decreases with increasing monomer concentration because of the higher viscosity of the system. With the experimental results, optimized reaction conditions were obtained. Accordingly, a high monomer conversion of about 67% and a high molecular weight of several millions can be obtained in a period of about 30 min. Furthermore, transmission electron micrographs show that the latex particles prepared are nanosized, indicating a promising technique for preparing nanoscale latex particles with a small amount of surfactant. In conclusion, a promising technique for ultrasonically initiated emulsion polymerization has been successfully performed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3356–3364, 2001  相似文献   

18.
原子转移自由基聚合合成耐热性共聚物   总被引:3,自引:0,他引:3  
自 1 995年第一篇有关过渡金属催化的原子转移自由基聚合 (ATRP)论文发表以来 ,国内外许多研究者都纷纷开展这方面的工作 ,人们已用该法合成了各类指定结构的聚合物[1~ 6] ,选用合适的引发剂比较容易合成出具有良好加工流动性的星型和超支化聚合物[2 ,3,6] .N 取代马来酰亚胺由于其环状结构而被广泛用于自由基共聚合制备耐热性聚合物[7~ 9] ,但N 取代马来酰亚胺的引入将降低聚合物的加工流动性 ,若能实现含N 取代马来酰亚胺单体结构的可控ATRP共聚合 ,利用多官能团引发剂如四溴甲基苯合成出星型耐热性共聚物 ,将可望同时改善聚…  相似文献   

19.
Electrospray ionization (ESI) is capable of ionizing many soluble polymers. The ESI spectra are complex because of overlap of the multiply charged ions of the oligomer distribution, causing current computer transform programs to fail. However, it is possible to determine the origin of the multiply charged ions, making it feasible to write a program designed to transform ESI polymer spectra. To assess the value of such a program for polymer analysis, isolated monodisperse methyl methacrylate (MMA) oligomers (25 and 50 repeat units) were used to determine molar signal response and propensity for fragmentation. The sum of the peak areas for the multiply charged MMA 50-mer was found to be only about 66% of the summed peak areas for the 25-mer for the same molar concentration. However, conversion of the multiply charged peak areas to the singly charged representations, with peak area compression taken into account, gave equal signal responses for the 25-and 50-mers. Signal response variations due to the tacticity of the MMA oligomers were not observed. Fragmentation of the MMA oligomers also was shown not to occur under normal ESI conditions. Therefore, transformation of the polymer spectra to the singly charged molecular ion distribution should allow accurate calculation of average molecular weights, polydispersity, end group mass, and repeat unit mass.  相似文献   

20.
The emulsion polymerization of methyl methacrylate (MMA) and styrene (St) were investigated with using polyamidoamine (PAMAM) dendrimer as seed, potassium persulfate as initiator and sodium dodecyl sulfate as emulsifier. The effects of 4.0GPAMAM dendrimer concentration, initiator concentration, emulsifier concentration, monomer concentration, and polymerization temperature on the monomer conversion and polymerization rate were investigated. At the same time, the influence of the generation of PAMAM dendrimer on latex particle size was studied also. The results showed that the monomer conversion and polymerization rate increased with increasing initiator concentration, emulsifier concentration, monomer concentration, and polymerization temperature. But polymerization rate increased firstly with an increase in the 4.0GPAMAM dendrimer from 0.03 g to 0.09 g and then decreased with further increase to 0.12 g. When the concentration of 4.0GPAMAM dendrimer less than 1.449 × 10?4 mol/L, the kinetic equation can be expressed by Rp∝[4.0GPAMAM]0.772[SDS]0.562[KPS]0.589[M]0.697, and the activation energy (Ea) of emulsion polymerization is 62.56kJ/mol. In additional, the copolymer latex particle size decreased and possessed monodispersity with increasing the generation of PAMAM dendrimer. According to FT-IR spectrum analysis, PAMAM dendrimer is successfully incorporated into the poly(PAMAM-St–MMA) latex particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号