首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new diamine containing sulfone,sulfide and amide groups was synthesized via a three-step reaction process. The nucleophilic substitution reaction of 4-aminothiophenol with 4-nitrobenzoyl chloride in the presence of propylene oxide (PO) afforded N-(4-mercaptophenyl)-4-nitrobenzamide(MPNB).The catalytic reduction of the nitro group in MPNB to amino group was accomplished by using Pd/C and hydrazine monohydrate to produce 4-amino-N-(4-mercapto phenyl)benzamide(AMPB).Reaction of two moles of AMPB with bis(...  相似文献   

2.
A new diamine containing ferrocene group with preformed ether and amide units was prepared via reaction of 1,1′-ferrocenedicarbonyl chloride with two moles of 2,6-bis(5-amino-1-naphthoxy)pyridine. Polycondensation reactions of the prepared diamine with different aromatic and aliphatic diacid chlorides in the presence of trimethylchlorosilane (TMSCl) resulted in preparation of novel ferrocene modified poly(amide ether amide)s. The monomer and polyamides were characterized and the effect of trimethylchlorosilane (TMSCl) as activating agent on the polymerization reaction was studied. The physical and thermal properties of the polyamides including inherent viscosity, solubility, thermal stability and behavior, flame-retardancy and crystallinity of the polymers were studied. The polymers showed good thermal stability and flame-retardancy, and also improved solubility in polar aprotic solvents.  相似文献   

3.
Aromatic soluble polyamides and copolyamides having hexafluoroisopropylidene and isopropylidene moieties in the molecular structure of polymer chain were prepared by reacting the aromatic diacid chlorides and fluorine or nonfluorine containing aromatic diamines using low-temperature polycondensation process. Polymers were produced with high yield and moderate to high inherent viscosity. All polyimides and copolyamides showed thermal stability above 440°C and glass transition temperature above 200°C. Some of the polyamides were cast into transparent bulk films which were further characterized by mechanical, x-ray, and water absorption analysis. Fluoro polyamides showed superior structural properties as compared to nonfluoro polyamides. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
Synthesis and characterization of ferrocene‐containing main‐chain polyamides are reported in this article. A new, interesting type of organometallic monomer (FDADO) based on ferrocene was prepared by interfacial condensation of 1,1′‐dichlorocarbonyl ferrocene with 2 mol 1,8‐diamino‐3,6‐dioxaoctane (DADO). A series of ferrocene‐based polyamides was prepared via polycondensation of the ferrocenyl diamine (FDADO) with different diacid chlorides using two different methods. The monomer and polymers were characterized by elemental analysis, infrared and NMR spectroscopy. The thermal stability and behavior of the synthesized polymers were evaluated by thermal gravimetric analysis (TGA), dynamic mechanical thermal analysis (DMTA), and differential scanning calorimetry (DSC). The crystallinity of polymers was examined by X‐ray diffraction analysis. Inherent viscosity, solubility and flame‐retardancy of the polymers were also studied. The obtained polymers showed good heat‐resistance and flame‐retardancy, and improved solubility vs generally reported polyamides in some common organic solvents. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Nucleophilic aromatic substitution reaction of 4-aminophenol and also 5-amino-1-naphthol with 2,6-dichloropyridine in N-methyl-2-pyrrolidone (NMP) as solvent, in the presence of potassium carbonate, afforded two aromatic ether diamines. Eight soluble, thermally stable polyamides were prepared by polycondensation reaction of the obtained diamines with aromatic and aliphatic diacid chlorides including terephthaloyl chloride (TPC), isophthaloyl chloride (IPC), adipoyl chloride (AC), and sebacoyl chloride (SC). The prepared monomers and polymers were characterized by conventional spectroscopic methods. Physical and thermal properties of the polymers, such as thermal behavior, thermal stability, solution viscosity, and solubility behavior were also studied.  相似文献   

6.
<正>A potential biodegradable and optically active bulky chiral aromatic amide-imidic diacid monomer,(2S,3S)-5-(3- methyl-2-phthalimidylpentanoylarnino)isophthalic acid(7),containing a rigid phthalimide and flexible L-isoleucine pendant group was synthesized in three steps.New aromatic polyamides including pendant phthalimido groups and flexible side spacers have been synthesized by direct polycondensation reaction of equimolar amounts of different aromatic diamines with an optically active diacid 7,using N-methyl-2-pyrrolidone(NMP) as a solvent and triphenyl phosphite/CaCl_2/pyridine as a condensing agent.These polyamides were characterized by FTIR,~1H-NMR spectroscopy,specific rotation, thermogravimetric and elemental analysis.The resulting polymers have inherent viscosities in the range of 0.21-0.45 dL/g. Amino acid existence in this backbone results in optically active polymers.Due to introduction of bulky and flexible groups in these polyamides,they show improved solubility in polar aprotic solvents such as NMP and dimethylacetamide and also good thermal stability(10%weight loss temperatures in excess of 330℃,and char yields at 600℃in nitrogen higher than 62%).  相似文献   

7.
A new diamine containing one keto and four ether groups was prepared through a three‐step reaction: first, hydroquinone was reacted with 1‐fluoro‐4‐nitrobenzene and 4‐(4‐nitrophenoxy) phenol was obtained. The next step was reduction of nitro group to amino group in which 4‐(4‐aminophenoxy) phenol was prepared. In the final step, the new diamine named as bis(4‐(4‐(4‐aminophenoxy)phenoxy)phenyl) methanone was synthesized through reaction of the later compound with 4,4′‐difluoro benzophenone. All prepared materials were fully characterized by spectroscopic methods and elemental analysis. Novel species of poly(keto ether ether amide)s were synthesized via polymerization reaction of the diamine with different diacid chlorides including terephthaloyl chloride, isophthaloyl chloride, and adipoyl chloride. All polyamides were characterized, and their properties such as thermal behavior, thermal stability, solubility, viscosity, water uptake, and crystallinity were investigated and compared together. The glass transition temperatures of the polymers were about 204–232°C, and their 10% weight losses were in the range of 396–448°C. Polymers showed high thermal stability and enhanced solubility that mainly resulted from incorporation of the diamine structure containing keto, ether, and aromatic units into polyamide backbones. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Summary: A new diamine monomer containing a crown ether was made to react with commercial diacid chlorides and dianhydrides to yield new aromatic polyamides and polyimides. The crown ether moiety was introduced as a pendant group so that the polymers showed enhanced solubility in organic solvents, good thermal properties (high transition temperatures and high thermal stability), and good film‐forming ability.

The new aromatic polyamides and polyimides bearing a benzo‐15‐crown‐5‐pendant group synthesized here.  相似文献   


9.
<正>Aromatic/aliphatic polyamides were synthesized from a diamine monomer,2,3-bis-p-aminophenylquinoxaline (Ⅳ),based on quinoxaline and various dicarboxylic acids of aliphatic,aromatic and heterocyclic.The diamine and polyamides were characterized by elemental analysis,FTIR and ~1H-NMR.The solubility of the polyamides was affected by the quinoxaline and heterocyclic groups in the polymer chain.They were all soluble in common organic solvents such as dimethylsulfoxide(DMSO),N,N-dimethylformamide(DMF) and N-methylpyrolidone(NMP).The polyamides showed inherent viscosity in the range of 0.25-0.3 dL/g in DMSO at 25℃and good thermal stability with the char yields in the range of 65%-82%at 600℃in nitrogen.  相似文献   

10.
A new diamine was prepared via reaction between 8-hydroxy-5-nitroquinoline and 4-nitrobenzoyl chloride, followed by reduction of the nitro groups of the resulted compound. Novel quinoline-based poly(ester-amide)s were produced through polycondensation reactions of the prepared diamine with different diacid chlorides. The monomer and poly(ester-amide)s were characterized and properties of the polymers including solution viscosity, thermal behavior and stability, solubility, and crystallinity were studied.

High thermal stability and improved solubility was observed for the polymers, indicating successful designing of monomer and related polymers for overcoming the main issue of thermally stable polymers, i.e. the problem of increasing solubility versus high thermal stability.

Also, by changing the diacid chlorides for the preparation of poly(ester-amide)s, the structure-property relations were investigated.  相似文献   

11.
A pyridine-based diacid was synthesized via nucleophilic substitution reaction of 4-hydroxy benzoic acid with 2,6-dichloropyridine in the presence of potassium carbonate. The diacid was characterized using FT-IR and 1H-NMR spectroscopic methods and also with elemental analysis. Polycondensation reaction of the diacid with different diols including 1,4-dihydroxy benzene, 1,5-dihydroxy naphthalene, bis-phenol A and bis-phenol-P resulted in preparation of pyridine-based poly(ether-ester)s. The polymers were characterized and their physical and thermal properties including inherent viscosity, molecular weight, solubility, thermal stability, thermal behavior and crystallinity were studied. They revealed high heat-resistance and improved solubility in polar solvents. Structure-property relations for the prepared polyester were also studied.  相似文献   

12.
Abstract

A new series of soluble aromatic polyamides was synthesized by low temperature solution polycondensation of novel aromatic diamine namely 3,5-bis-(4′-amino phenyl)-4-(4″-methoxy-2″-pentadecyl phenyl) 1,2,4-triazole (VII) with aromatic diacid chlorides, viz. isophthaloyl chloride (IPC) and terephthaloyl chloride (TPC). The aromaticdiamine (VII) was characterized by elemental analysis, FT-IR, NMR (1H, 13C), and mass spectrometry. Copolyamides were also synthesized by employing various mole proportions of IPC and TPC with diamine (VII). Inherent viscosities of these polyamides were in the range of 0.50–0.65 dL/g in DMAc, indicating formation of moderate to high molecular weight of polyamides. These polyamides showed good solubility in polar aprotic solvents such as N,N-Dimethyl acetamide (DMAc), N-Methyl 2-pyrrolidone (NMP), N, N, Dimethyl formamide (DMF), and Dimethyl sulphoxide (DMSO), which may be due to incorporation of pendant methoxyphenyl moiety with pentadecyl units. The amorphous morphology of polyamides as evidenced by XRD. These polyamides had lower glass transition temperatures; as determined by DSC, compared to the Tg of conventional aromatic polyamides due to internal plasticization effect of long alkyl pentadecyl group. Polymers showed good thermal stability, with initial decomposition temperature above 300?°C.  相似文献   

13.
A series of new Schiff base polyamides(PAs) were synthesized by polycondensation of benzilbisthiosemicarbazone diamine(LH6) with different commercially available aliphatic and aromatic diacid chlorides. The monomer and all the PAs were characterized by FTIR,1H-NMR,and elemental analysis.The prepared polyamides showed inherent viscosities in the range of 0.30-0.36 dL/g in DMF at 25℃,indicating their moderate molecular weight.The PAs were completely soluble in aprotic polar solvents such as dimethylformamide(DMF),N-methylpyrolidone(NMP), tetrachloroethane(TCE),dimthylsulfoxide(DMSO) and also in H2SO4 and partially soluble in THF,acetone and chloroform at room temperature.Thermal analysis showed that these PAs were practically amorphous and exhibited 10%weight loss above 220℃.  相似文献   

14.
A series of polyamides which contained thianthrene, phenoxatiin, and dibenzo-p-dioxin units was synthesized from tricyclic fused-ring diamines and aromatic diacid chlorides by solution polycondensations at a low temperature. The amorphous polyisophthalamides were highly soluble in polar organic solvents, whereas some of the polyterephthalamides with a fair degree of crystallinity were insoluble. The solubility of the series of polyamides increased in the order of the dibenzo-p-dioxin-containing polymers < phenoxatiin-containing polymers < thianthrene-containing polymers. The thermal stability increased in the reverse order and the dibenzo-p-dioxinpolyamides were more thermostable than the corresponding open-chain polymers with diphenyl ether linkages. The polyamides derived from 2,8-oriented tricyclic diamines showed somewhat lower glass transition temperatures than those from 2,7-oriented diamines.  相似文献   

15.
Wholly aromatic polyamides have been prepared by the interfacial polycondensation of 2,6-naphthalenedicarboxylic acid chloride with m-phenylenediamine. Also, copolyamides with isophthaloyl or terephthaloyl chlorides and the naphthalene diacid chloride were synthesized. The resultant polyamides were amorphous or slightly crystalline as determined by x-ray diffraction, had tensile properties characteristic of hard, strong materials, and were more thermally stable than aromatic polyamides prepared solely from benzene diacid chlorides.  相似文献   

16.
Two novel isophthalic diacid‐based monomers have been synthesized by inclusion in ring position 5 of a functionalized benzoylamine moiety. The functionalization includes a 12‐crown‐4 ether group fused with the benzene subunit and a dipodand substructure, formally a disubstitution of the benzene ring, with two sequences of ethyl‐terminated ethylene oxide units, which represent the open‐chain counterpart of the alicylic crown moiety. The polycondensation of the two diacids with five aromatic diamines yielded 10 new polyamides with crown or podand pendant substructures. The polyamides had previously been chemically characterized by NMR, IR, and elemental analysis. The polymers showed high glass transition temperatures of up to 349 °C, good thermal stability (Tdonset, N2 ≈ 400 °C), and improved solubility in organic solvents. The presence of acyclic or alicyclic oxyethylene sequences as crown ether or podand substructures and an additional amide side group per repeat unit made the polymers essentially amorphous and improved their water absorption ability in comparison with nonsubstituted polyamides. Water uptake values as high as 12% were observed at 65% relative humidity. All the polyamides showed a good film‐forming ability, and the mechanical properties of these films are considered to be satisfactory for experimental aromatic polyamides. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2270–2281, 2006  相似文献   

17.
A novel aromatic diamine,2-(5-(3,5-diaminophenyl)-l,3,4-oxadiazole-2-yl)pyridine(POBD),containing a pyridine ring and a 1,3,4-oxadiazole moiety,was synthesized.It was used in a polycondensation with various aromatic and aliphatic diacid chlorides to generate a series of new aromatic polyamides with pendant 1,3,4-oxadiazole groups.The prepared polyamides were characterized by IR,elemental analysis and through the synthesis of model compounds.Thermophysical properties of the synthesized polyamides have been studied by DSC,TGA and inherent viscosity measurements. Relatively high inherent viscosity values(0.76-1.62 dL/g,in 0.125%H2SO4 at 25℃) were observed for these compounds. Number average molecular weight(Mn) of the polymers was measured by vapor phase osmometry(VPO).The introduction of bulky side chains in the structure of aromatic polyamides led to increased solubility of these polymers in common polar and aprotic solvents,such as DMF,DMSO,NMP and DMAc,which allowed thin films to be cast from polymer solutions. The highest molecular weight(Mn = 51190) was observed for polymer(DC),which was prepared from pyridine-2,6-dichlorocarbonyl.  相似文献   

18.
A new oxypyrone diamine, 2,6-bis(4-aminophenyl)-3,5-dimethyltetrahydro-4H-pyran-4-one (DAPP), was prepared from 4-nitrobenzaldehyde and 3-oxa-n-pentane in a two-step reaction with a high yield and a high purity. Aromatic polyamides were obtained from this novel condensation monomer and several diacid chlorides through the conventional low-temperature solution method in N,N-dimethylacetamide. Polycondensation results were consistent with a high reactivity for DAPP because high yields and high molecular weight polyamides were obtained with inherent viscosities up to 1.8 dL/g. The reactivity of DAPP was also estimated with theoretical calculations from computer programs for molecular simulation, with orbital and charge factors considered. The polymers showed improved solubility in organic solvents, relative to conventional wholly aromatic polyamides, and high glass-transition temperatures (from differential scanning calorimetry) over 270 °C. However, the thermal resistance, as estimated by thermogravimetric analysis, was lower than that of conventional aromatic polyamides; nevertheless, decomposition temperatures well beyond 300 °C were observed in nitrogen and air. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1825–1832, 2001  相似文献   

19.
A novel flexible diamine with built-in ester, amide and ether groups named terephthalic acid bis(4-{2-[2-(2-amino ethoxy)ethoxy]ethyl carbamoyl}phenyl) ester (TABE), was synthesized via two steps. Nucleophilic reaction of 4-hydroxybenzoic acid with terephthaloyl chloride in the presence of NaOH yielded terephthaloyl bis (4-oxybenzoic) acid (TOBA). The diamine (TABE) was prepared via two direct and indirect methods. In the indirect method TOBA was converted to related diacid chloride and reacted with 1,8-diamino-3,6-dioxaoctane (DADO). Direct method was achieved through the reaction of TOBA with DADO via Yamazaki method. TOBA and TABE were fully characterized and TABE was used to prepare new poly(ester amide ether amide)s through polycondensation with different diacid chlorides in the presence of trimethylchlorosilane (TMSCl). The polymers were characterized using conventional methods and their physical properties including inherent viscosity, thermal behavior, thermal stability, crystallinity, and solubility were studied. The polymers showed good thermal stability and improved solubility.  相似文献   

20.
A new pyridine-based diacid containing ether and imide units was synthesized via reaction of 5-amino-1-naphthol with 2,6-dichloropyridine in the presence of potassium carbonate in N-methyl-2-pyrrolidone (NMP), and subsequent reaction of the obtained diamine with 2 mol of trimellitic anhydride. A series of poly(ether imide ester)s was synthesized by the polycondensation reactions of the prepared diacid with different diols via high temperature solution polycondensation reaction method. All the products were fully characterized by common spectroscopic methods. The polymers were examined by elemental analysis, IR and 1H NMR spectra, inherent viscosity, X-ray diffraction, DSC, TGA and DMTA and their properties were studied. Polymers showed high thermal stability and good solubility in polar aprotic solvents. The Structure-property relations of the polymers were also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号