首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of interpenetrating polymer networks (IPNs) based on epoxy (EP) resin and polyurethane (PU) prepolymer derived from soybean oil-based polyols with different mass ratios were synthesized. The structure, thermal properties, damping properties, tensile properties, and morphology of soybean oil-based PU/EP IPNs were characterized by Fourier-transform infrared spectroscopy, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), universal test machine, and scanning electron microscopy (SEM). DSC and DMA results show that the glass transition temperature of the soybean oil-based PU/EP IPN decreases with the increase of PU prepolymer contents. Soybean oil-based PU/EP IPNs have better damping properties than that of the pure epoxy resin. The tensile strength and modulus of PU/EP IPNs decrease, while elongation at break increases with the increase of PU prepolymer contents. SEM observations reveal that phase separation appears in PU/EP IPNs with higher PU prepolymer contents.  相似文献   

2.
A series of conducting interpenetrating polymer networks (IPNs), are prepared by sequential polymerization of castor oil based polyurethane (PU) with poly(methyl methacrylate) (PMMA) and polyaniline doped with camphor sulphonic acid (PAni)CSA. The effect of different amount of PAni (varies from 2.5-12.5%) on the properties of PU/PMMA (50/50) IPNs such as electrical properties like conductivity, dielectric constant and dissipation factor; mechanical properties like tensile strength and percentage elongation at break have been reported. (PAni)CSA filled IPNs shows improved tensile strength than the unfilled IPN system. The thermal stability and surface morphology of unfilled and (PAni)CSA filled PU/PMMA (50/50) IPN sheets were investigated using a thermogravimetric analyzer (TGA) and a scanning electron microscope (SEM). TGA thermograms of (PAni)CSA filled PU/PMMA (50/50) IPNs show a three-step thermal degradation process. SEM micrograms of filled PU/PMMA IPN system shows spherulitic structure at higher concentration of (PAni)CSA.  相似文献   

3.
Two kinds of interpenetrating polymer networks (IPNs) composed of two-component polyurethane (PU) and vinyl or methacrylic polymer (PV), namely, (polyether-castor oil)PU/PV IPN(I) and (polybutadiene-castor oil)PU/PV IPN(II), were synthesized at room temperature using benzoyl peroxide and N,N-dimethylaniline as redox initiator and dibutyltin dilaurate as catalyst. The former IPN was prepared by polymerization of castor oil, NCO-terminated polyether and vinyl or methacrylic monomer together and the latter IPN was obtained by polymerization of castor oil, NCO-terminated polybutadiene, NCO-terminated castor oil and vinyl or methacrylic monomer together. Various synthesis conditions affecting mechanical properties of the two kinds of IPNs were studied. Acrylonitrile (AN) is a good monomer for synthesizing IPN(I), but is a poor monomer for preparing IPN(II). At optimum conditions for the synthesis, both the (polyether-castor oil)PU/PAN IPNs and the (polybutadiene-castor oil)PU/polystyrene (PSt) IPNs possess permanent set about 10%, tensile strength over 13 and 11 MPa and ultimate elongation over 240% and 270%, respectively, thus behaving as elastomers. TEM micrograph of a (polybutadiene-castor oil)PU/PSt IPN showed a microphase separation in the IPN.  相似文献   

4.
Interpenetrating polymer networks (IPNs) of polyurethane (PU) and maleimide-terminated polyurethane (UBMI) were prepared by using a simultaneous polymerization technique. The effects of the UBMI molecular weight and amounts of the UBMI in the IPNs on the mechanical properties, dynamic mechanical properties, degree of compatibility, water absorption, surface properties and dynamic thrombosis were investigated. Bulk structure and surface properties were analyzed in order to correlate their blood compatibility. The IPNs exhibited a higher ultimate tensile strength especially when the UBMI with short soft chains was introduced. The heterogeneous characteristics were found for the IPNs when longer soft segment chains were incorporated in the PU component polymer. The presence of hydrophilic/hydrophobic alternative microdomains on the IPN surface was proposed to be the reason for good blood compatibility. The degree of compatibility, compositions of each domain and content of each domain in the matrix were calculated and correlated with the blood compatibility.  相似文献   

5.
A series of different weight ratios of guar gum viz. 5, 10, 20 and 30 were incorporated into polyurethane/polyacrylonitrile (PU/PAN, 50/50) semi interpenetrating polymer networks (SIPNs) using polyethylene glycol-400, 4,4′-diphenyl methane diisocyanate, acrylonitrile, benzoyl peroxide and new metallic catalyst. The obtained polymer composites were subjected to biodegradation studies using specific fungi Aspergillus niger. The composites are characterized for physico-mechanical properties like density and tensile behaviour of the specimens before and after biodegradation. The positron annihilation lifetime spectroscopy (PALS) was used to monitor the content of free volume before and after biodegradation. The extent of degradation was examined by change in tensile behaviour and surface morphology. The influences of fungi on mechanical and morphological behaviour of filled IPNs are found to be interesting. The free volume changes in the composite systems correlates well with the mechanical properties.  相似文献   

6.
Epoxy resin nanocomposites containing organophilic montmorillonite (oM) and polyurethane were prepared by adding oM to interpenetrating polymer networks (IPNs) of epoxy resin and polyurethane (EP/PU). The dispersion degree of oM in EP/PU matrix was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Fourier transform infrared spectrometry (FT-IR) showed that strong interactions existed between oM and EP/PU matrix, and oM had some effect on hydrogen bonding of these EP/PU IPNs nanocomposites. Positron annihilation spectroscopy (PALS) and differential scanning calorimetry (DSC) measurements were used to investigate the effect of oM and PU contents on free volume and glass transition temperature (Tg) of these nanocomposites. The PALS and DSC results clearly showed that the presence of oM led to a decrease in the total fractional free volume, which was consistent with increasing Tg upon addition of oM, ascribed to increasing hydrogen bonding in interfacial regions of oM and EP/PU matrix and enhancing the miscibility between EP phase and PU phase. In addition, with increasing PU content, the total fractional free volume increased, corresponding to decreasing Tg.  相似文献   

7.
Abstract

Semi‐ and full‐interpenetrating polymer networks (IPNs) of uralkyd (UA) resin based on hydrogenated castor oil and poly(butyl acrylate) (PBA) were prepared by the sequential mode of synthesis. These IPNs were characterized for their resistance to thermal behavior, swelling (%), and mechanical properties. The morphology of the IPNs was studied by scanning electron microscopy (SEM). The effect of the variations of the blend ratios on the above‐mentioned properties was examined. The mechanical properties significantly enhanced by increasing UA component in the blend. Full‐IPNs exhibited higher apparent densities, mechanical properties, and thermal stability than the corresponding semi‐IPNs.  相似文献   

8.
The peculiarities of segmental dynamics over the temperature range of ?140 to 180 °C were studied in polyurethane‐poly(2‐hydroxyethyl methacrylate) semi‐interpenetrating polymer networks (PU‐PHEMA semi‐IPNs) with two‐phase, nanoheterogeneous structure. The networks were synthesized by the sequential method when the PU network was obtained from poly(oxypropylene glycol) (PPG) and adduct of trimethylolpropane (TMP) and toluylene diisocyanate (TDI), and then swollen with 2‐hydroxyethyl methacrylate monomer with its subsequent photopolymerization. PHEMA content in the semi‐IPNs varied from 10 to 57 wt %. Laser‐interferometric creep rate spectroscopy (CRS), supplemented with differential scanning calorimetry (DSC), was used for discrete dynamic analysis of these IPNs. The effects of anomalous, large broadening of the PHEMA glass transition to higher temperatures in comparison with that of neat PHEMA, despite much lower Tg of the PU constituent, and the pronounced heterogeneity of glass transition dynamics were found in these networks. Up to 3 or 4 overlapping creep rate peaks, characterizing different segmental dynamics modes, have been registered within both PU and PHEMA glass transitions in these semi‐IPNs. On the whole, the united semi‐IPN glass transition ranged virtually from ?60 to 160 °C. As proved by IR spectra, some hybridization of the semi‐IPN constituents took place, and therefore the effects observed could be properly interpreted in the framework of the notion of “constrained dynamics.” The peculiar segmental dynamics in the semi‐IPNs studied may help in developing advanced biomedical, damping, and membrane materials based thereon. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 963–975, 2007  相似文献   

9.
Simultaneous and sequential poly(N-isopropyl acrylamide) (PNIPAAm)/poly(dimethyl siloxane) (PDMS) semi-interpenetrating polymer networks (IPNs) with different linear PDMS contents were prepared by free radical polymerization method. Their phase morphologies have been characterized by FTIR, DSC and SEM. The simultaneous semi-IPNs exhibited phase transition temperatures (Tpt) shifted higher temperature from glass transition temperatures (Tg) of their respective homopolymers, suggesting a heterophase morphology and only physical entanglement between the PNIPAAm network and linear PDMS with high molecular weight (Mn≈9000 g/mol). For sequential semi-IPNs, the shift of Tpts towards lower temperature suggested that the chemical interaction between the constituents of the IPNs increased with increasing PDMS content in the network. In addition, these semi-IPNs were characterized for their thermo-sensitive behaviour by equilibrium swelling studies. The results showed that incorporation of hydrophobic PDMS polymer into the thermo- and pH-sensitive PNIPAAm and P(NIPAAm-co-IA) (itaconic acid) hydrogels by semi-IPN formation decreased swelling degrees of IPNs without affecting their LCSTs whereas addition of acrylated PDMS (Tegomer V-Si 2250) as crosslinker instead of N,N-methylenebisacrylamide (BIS) into the structures of these hydrogels changed their LCSTs along with their swelling degrees.  相似文献   

10.
Plasma-induced grafting of polydimethylsiloxane (PDMS) onto the surface of polyurethane (PU) film. The virgin, plasma treated, and PDMS grafted PU films were characterized by means of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, water drop contact angle measurements, and scanning electron microscopy (SEM). The ATR-FTIR spectrogram of the grafted film showed the new characteristic peaks of PDMS. These grafted surfaces exhibited higher hydrophobicity and homogenous morphology. In vitro cell culture study showed that modified surfaces as well as virgin film were compatible with fibroblast cells. The formation of graft polymers combines the biostability of silicone with excellent physical and mechanical properties of PU.  相似文献   

11.
Themethodofblendingbyinterpenetratingpolymernetworks(IPNs)isoftenusedtoobtainelastomerswithpropertiesinexcessofthoseexhibitedbytraditionalblendingways'.Inthispaper,aseriesofnovelpolyurethane/poly(urethanemodifiedbismaleimide-bismaleimide)(PU/P(UBMI-BMI))IPNsweresynthesizedandcharacterizedby'HNMR,FTIR,TEM,andTGAanaIysis.BMIwassynthesizedasfollowsfUBMlwasintroducedtomodifythecompatibilityofthetwonetworks,whichwassynthesizedasfollows:Where(l)ishydroxyl-terminatedpoly(diethyleneadipa…  相似文献   

12.
We successfully prepared a series of transparent materials with semi‐interpenetrating polymer networks (semi‐IPNs) from castor‐oil‐based polyurethane (PU) and benzyl starch (BS). The miscibility, morphology, and properties of the semi‐IPN films were investigated with attenuated total reflection/Fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical thermal analysis, scanning electron microscopy, wide‐angle X‐ray diffraction, electron spin resonance (ESR), ultraviolet–visible spectroscopy, and tensile testing. The results revealed that the semi‐IPN films had good or certain miscibility with BS concentrations of 5–70 wt % because of the strong intermolecular interactions between PU and BS. With an increase in the concentration of BS, the tensile strength and Young's modulus of the semi‐IPN materials increased. The ESR data confirmed that the segment volume of PU in the semi‐IPNs increased with the addition of BS; that is, the chain stiffness increased as a result of strong interactions between PU and BS macromolecules. It was concluded that starch derivatives containing benzyl groups in the side chains more easily penetrated the PU networks to form semi‐IPNs than those containing aliphatic groups, and this led to improved properties. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 603–615, 2005  相似文献   

13.
窦东友  王贵友  胡春圃 《化学学报》2001,59(9):1476-1483
分别以双酚-A型环氧树脂E-51和聚醚型环氧树脂E-46为原料合成了两种二乙胺-环氧树脂和加成多元醇(分别命名为AE-51,AE-46),将其和甲基丙烯酸一起用于合成聚氨酯/接枝乙烯基酯树脂(PU/接枝VER)互穿聚合物网络(IPN),使之在两个网络间形成离子键。实验结果表明,这类新型的IPN材料中两个网络间的互穿程度与相容性进一步提高,从而导致刚性的接枝VER对弹性的PU网络有更好的增强效果。DSC和FTIR的测定结果表明,在含AE-51的IPN中,由于离子键的作用使PU网络硬段的有序结构遭到很大程度的破坏,与AE-51和PU网络中的硬段以及VER网络有较好的相容性有关,因此这类IPN材料具有较好的力学性能。  相似文献   

14.
Semi-interpenetrating polymer networks (SIPNs) of polyurethane (PU) and poly(methyl methacrylate) (PMMA) in different weight ratios viz., 90/10, 70/30, 60/40 and 50/50 were prepared. The SIPNs were characterized for physico-mechanical properties like density, tensile strength and elongation at break. Thermal stability of IPNs was measured using thermogravimetric analysis (TGA). From the TGA thermograms it was noticed that all IPNs are stable up to 325 °C and undergo three-step thermal degradation in the temperature ranges 251-400, 378-508 and 445-645 °C for first, second and third steps, respectively. Thermal degradation kinetic parameters like activation energy (Ea) were calculated using Broido, Coats-Redfern and Horowitz-Metzger models. The values obtained by Broido and Horowitz-Metzger methods showed concurrency, whereas Coats-Redfern method showed relatively lower values. Surface morphology measured using scanning electron microscope (SEM) showed two-phase morphology for all the IPNs.  相似文献   

15.
Hydrophobic-hydrophilic interpenetrating polymer networks (IPNs) of polyurethane and polyacrylamide have been synthesized. The IPNs have been characterized by IR, thermal, and mechanical studies. SEM studies indicate phase mixing of some IPNs. Solvent resistance and surface hydrophilicity as evidenced by contact angle measurements suggest that these IPNs could be used for biomedical applications.  相似文献   

16.
采用同步法合成的丁腈羟聚氨酯/聚甲基丙烯酸酯类IPN样品,以TPA动态力学方法研究它的丙烯酸酯组份中,不同组份比,侧基结构和含量与动态力学性能的关系。结果指出,这些体系是半相容体系和相容体系。包含甲基丙烯酸正丁酯,异丁酯的IPN力学阻尼峰比甲基丙烯酸甲酸所具有的峰明显加宽。IPN中丙烯腈对体系的动态力学影响较大。  相似文献   

17.
Polyurethane (PU) based on polyepichlorohydrin/poly(methyl methacrylate) (PECH/PMMA) interpenetrating polymer networks (IPNs) was synthesized by a simultaneous method. The effects of composition, hydroxyl group number of PECH, NCO/OH ratio and crosslinking agent content in IPNs were investigated in detail. Some other glycols, such as poly(ethylene glycol), poly(propylene glycol) and hydroxyl-terminated polybutadiene, were also used to obtain PU/PMMA IPNs. The interpenetrating and fracture behaviors of the IPNs are explained briefly.  相似文献   

18.

This paper is an investigation on the thermo‐mechanical properties of a new class of materials, which holds promise for its potential use as solid polymer electrolytes, i.e., SPE material. A series of poly(ethylene oxide)‐polyurethane/poly(acrylonitrile) (PEO‐PU/PAN) semi‐IPNs, along with their LiClO4 salt complexes, were characterized for their thermal, mechanical and dimensional stability using DSC, TG‐DTA, UTM and DMTA. The glass transition temperature (Tg) of both the undoped and doped semi‐IPNs, obtained by DSC, remained well below room temperature (~?50°C to ?35°C), satisfying one of the essential requirements to serve as a SPE host matrix. The crystallization process in the PEO segments of the PEO‐PU/PAN semi‐IPNs was prevented at higher salt concentrations, which is attributed to the Li+ ion mediated pseudo‐crosslinks. Good thermal stability of the semi‐IPNs was evident from the degradation onset temperature (T0~240°C) with a three‐stage degradation process, which is independent of the PAN content as observed from differential thermogravimetric studies. The incorporation of PAN in the PEO‐PU networks results in improved mechanical properties, such as tensile strength and modulus while retaining the flexibility of the semi‐IPNs. The peak temperatures and storage modulus obtained from DMTA correlates well with the observations of DSC and tensile measurements.  相似文献   

19.
以水热法合成的BaTiO3纤维和同步法制备的互穿聚合物网络为原料,采用原位分散聚合法获得了一系列BaTiO3/(PU/UP-IPNs)复合材料。采用傅立叶交换红外分光光度计跟踪考察了IPNs的聚合过程,用透射电镜观测了IPNs及其复合物的形貌。结果表明,IPNs中两相相畴尺寸在纳米级范围内,在此基础上,实现了BaTiO3纤维状的复合。动态力学性能的检测结果表明,相较纯IPNs,复合材料的阻尼损耗模量和阻尼损耗因子值均有所提高,且在低温区均出现了肩峰。复合物的最大损耗因子值均大于0.4,在约50℃范围内,E’值提高100MPa。力学性能检测结果表明,IPNs中的连续相是决定材料力学性能的主要因素;有机/无机组分间混溶性的降低,使BaTiO3/IPNs复合材料的抗张强度和断裂伸长率均下降。  相似文献   

20.
In the present work, sequential interpenetrating polymer networks (IPNs) based on silicone and poly(2‐methacryloyloxyethyl phosphorylcholine) (PMPC) were developed with improved protein resistance. The structure and morphology of the IPNs were characterized by Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The results showed that the IPNs exhibited heterogeneous morphology. The bulk properties such as water content, ion permeability, and mechanical strength of the IPNs were determined by gravimetric method, ionoflux measurement technique, and tensile tester, respectively. The surface characteristics of the IPNs were investigated by X‐ray photoelectron spectroscopy (XPS) and contact angle measurements. XPS analysis suggested that PMPC was present on the surface as well as in the bulk material. The IPNs possessed more hydrophilic surface than pristine silicone revealed by contact angle measurements. Bovine serum albumin (BSA) was used as a model protein to evaluate protein resistance by a bicinchoninic acid assay method. The result revealed that the protein adsorption on the IPNs was significantly reduced compared to pristine silicone. These results suggest that the IPNs based on silicone and PMPC may be developed as novel ophthalmic biomaterials. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号