首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An optical oxygen-sensing material based on the fluorescence intensity changes of pyrene-1-butyric acid (PBA) chemisorption film has been developed and characterised. The fluorescence intensity of PBA film decreased with increase of oxygen concentration. The I0/I100 value of PBA film is estimated to be 6.14±0.15 and large Stern-Volmer constant (KSV=0.028±0.13 Torr−1) is obtained. After irradiation for 24 h with 150 W tungsten lamp, little changes of oxygen-sensing properties were observed. These results indicate that PBA film is highly oxygen-sensitive and photostability device. The response times of the PBA chemisorption film were 10.0 s for switching from argon to oxygen, and 53.0 s for switching from oxygen to argon. Moreover, the optical sensor based on the PBA chemisorption film was applied to the measurement of oxygen concentration in aqueous solution.  相似文献   

2.
This paper presents a highly sensitive oxygen sensor that comprises an optical fiber coated at one end with platinum(II) meso-tetrakis(pentafluorophenyl)porphyrin (PtTFPP) and PtTFPP entrapped core-shell silica nanoparticles embedded in an n-octyltriethoxysilane (Octyl-triEOS)/tetraethylorthosilane (TEOS) composite xerogel. The sensitivity of the optical oxygen sensor is quantified in terms of the ratio I0/I100, where I0 and I100 represent the detected fluorescence intensities in pure nitrogen and pure oxygen environments, respectively. The experimental results show that the oxygen sensor has a sensitivity (I0/I100) of 166. The response time was 1.3 s when switching from pure nitrogen to pure oxygen, and 18.6 s when switching in the reverse direction. The experimental results show that compared to oxygen sensors based on PtTFPP, PtOEP, or Ru(dpp)32+ dyes, the proposed optical fiber oxygen sensor has the highest sensitivity. In addition to the increased surface area per unit mass of the sensing surface, the dye entrapped in the core of silica nanoparticles also increases the sensitivity because a substantial number of aerial oxygen molecules penetrate the porous silica shell. The dye entrapped core-shell nanoparticles is more prone to oxygen quenching.  相似文献   

3.
A compact photoluminescence (PL)-based O2 sensor utilizing an organic light emitting device (OLED) as the light source is described. The sensor device is structurally integrated. That is, the sensing element and the light source, both typically thin films that are fabricated on separate glass substrates, are attached back-to-back. The sensing elements are based on the oxygen-sensitive dyes Pt- or Pd-octaethylporphyrin (PtOEP or PdOEP, respectively), which are embedded in a polystyrene (PS) matrix, or dissolved in solution. Their performance is compared to that of a sensing element based on tris(4,7-diphenyl-l,10-phenanthroline) Ru II (Ru(dpp)) embedded in a sol-gel film. A green OLED light source, based on tris(8-hydroxy quinoline Al (Alq3), was used to excite the porphyrin dyes; a blue OLED, based on 4,4'-bis(2,2'-diphenylviny1)-1,1'-biphenyl, was used to excite the Ru(dpp)-based sensing element. The O2 level was monitored in the gas phase and in water, ethanol, and toluene solutions by measuring changes in the PL lifetime tau of the O2-sensitive dyes. The sensor performance was evaluated in terms of the detection sensitivity, dynamic range, gas flow rate, and temperature effect, including the temperature dependence of tau in pure Ar and O2 atmospheres. The dependence of the sensitivity on the preparation procedure of the sensing film and on the PS and dye concentrations in the sensing element, whether a solid matrix or solution, were also evaluated. Typical values of the detection sensitivity in the gas phase, S(g) identical with tau(0% O2)/tau(100% O2), at 23 degrees C, were approximately 35 to approximately 50 for the [Alq3 OLED[/[PtOEP dye] pair; S(g) exceeded 200 for the Alq3/PdOEP sensor. For dissolved oxygen (DO) in water and ethanol, S(DO) (defined as the ratio of tau in de-oxygenated and oxygen-saturated solutions) was approximately 9.5 and approximately 11, respectively, using the PtOEP-based film sensor. The oxygen level in toluene was measured with PtOEP dissolved directly in the solution. That sensor exhibited a high sensitivity, but a limited dynamic range. Effects of aggregation of dye molecules, sensing film porosity, and the use of the OLED-based sensor arrays for O2 and multianalyte detection are also discussed.  相似文献   

4.
Fujiwara Y  Amao Y 《Talanta》2004,62(3):655-660
Optical oxygen-sensitivity using pyrene carboxylic acid with long alkyl chain (1-pyrenedecanoic acid and 1-pyrenedodecanoic acid) and myristic acid co-chemisorption layer was controlled by varying the molar ratio of myristic acid to pyrene carboxylic acid. The ratio I0/I100, where I0 and I100 represent the detected fluorescence intensities from a substrate exposed to 100% argon and 100% oxygen, respectively, is used as an indicator of the sensitivity of the sensing film. At a composition ratio of 1 pyrene carboxylic acid to 10 myristic acids, the I0/I100 attained its maximum value and then the ratio decreased with increase in the molar ratio of myristic acid to pyrene carboxylic acid. The Stern-Volmer constant (KSV) also attained its maximum value at a composition ratio of one pyrene carboxylic acid to ten myristic acids and then the ratio decreased with increase in the molar ratio of myristic acid to pyrene carboxylic acid. The oxygen-sensitivity of optical sensor using pyrene carboxylic acid is optimized by myristic acid co-chemisorption.  相似文献   

5.
New sensing films have been developed for the detection of molecular oxygen. These films are based on luminescent Ir(III) dyes incorporated either into polystyrene (with and without plasticizer) or metal oxide, nanostructured material. The preparation and characterization of each film have been investigated in detail. Due to their high sensitivity for low oxygen concentration, the parameters pO2(S=1/2) and ΔI1% have been also evaluated in order to establish the most sensitive membrane for controlling concentrations between 0 and 10% and low oxygen concentrations (lower than 1%), respectively. The results show that the use of nanostructured material increased the sensitivity of the film; the most sensitive membrane for controlling O2 between 0 and 10% is based on N1001 immobilized in AP200/19 (ksv = 2848 ± 101 bar−1 and pO2(S=1/2)=0.0006), and the complex N969 incorporated into AP200/19 seems to be the most suitable for applications in oxygen trace sensing (ΔI1% = 93.13 ± 0.13%).  相似文献   

6.
Approaches to generate porous or doped sensing films, which significantly enhance the photoluminescence (PL) of oxygen optical sensors, and thus improve the signal-to-noise (S/N) ratio, are presented. Tailored films, which enable monitoring the relative humidity (RH) as well, are also presented. Effective porous structures, in which the O2-sensitive dye Pt octaethylporphyrin (PtOEP) or the Pd analog PdOEP was embedded, were realized by first generating blend films of polyethylene glycol (PEG) with polystyrene (PS) or with ethyl cellulose (EC), and then immersing the dried films in water to remove the water-soluble PEG. This approach creates pores (voids) in the sensing films. The dielectric contrast between the films’ constituents and the voids increases photon scattering, which in turn increases the optical path of the excitation light within the film, and hence light absorption by the dye, and its PL. Optimized sensing films with a PEG:PS ratio of 1:4 (PEG’s molecular weight Mw ∼8000) led to ∼4.4× enhancement in the PL (in comparison to PS films). Lower Mw ∼200 PEG with a PEG:EC ratio of 1:1 led to a PL enhancement of ∼4.7×. Film-dependent PL enhancements were observed at all oxygen concentrations. The strong PL enhancement enables (i) using lower dye (luminophore) concentrations, (ii) reducing power consumption and enhancing the sensor’s operational lifetime when using organic light emitting diodes (OLEDs) as excitation sources, (iii) improving performance when using compact photodetectors with no internal gain, and (iv) reliably extending the dynamic range.  相似文献   

7.
Amao Y  Komori T 《Talanta》2005,66(4):976-981
An optical CO2 sensor based on the overlay of the CO2 induced absorbance change of pH indicator dye α-naphtholphthalein in poly(isobutyl methacrylate) (polyIBM) layer with the fluorescence of tetraphenylporphyrin (TPP) in polystyrene layer is developed. The observed luminescence intensity from TPP at 655 nm increased with increasing the CO2 concentration. The ratio I100/I0 value of the sensing film consisting of α-naphtholphthalein in polyIBM and TPP in polystyrene layer, where I0 and I100 represent the detected luminescence intensities from a layer exposed to argon and CO2 saturated conditions, respectively, that the sensitivity of the sensor, is estimated to be 192. The response and recovery times of the sensing film are less than 6.0 s for switching from argon to CO2, and for switching from CO2 to argon. The signal changes are fully reversible and no hysterisis is observed during the measurements. The highly sensitive optical CO2 sensor based on fluorescence intensity changes of TPP due to the absorption change of α-naphtholphthalein in polyIBM layer with CO2 is achieved.  相似文献   

8.
We present results of steady‐state and transient photoluminescence studies of molecularly doped poly(fluorene) films. We study blends with increasing content of the triplet emitter (2,3,7,8,12,13,17,18‐octaethyl‐porphyrinato)PtII (PtOEP) when dispersed in the polymeric poly(fluorene) matrix of the poly[9,9‐di‐(2‐ethylhexyl)‐fluorenyl‐2,7‐diyl] (PF26) derivative. We carry out a unified study of the photophysical reactions that are involved in the energy transfer processes in this system by probing the three luminescence processes of a) PF26 fluorescence, b) triplet–triplet annihilation (TTA) induced up‐converted PF26 delayed fluorescence and c) PtOEP phosphorescence. With increasing PtOEP content, the process of photon energy recycling in the PF26:PtOEP system is manifested from the quenching of the TTA‐induced up‐converted PF26 delayed fluorescence and it is rationalized with the use of Forster theory of resonant energy transfer. Based on the combined results of the photophysical and the transmission electron microscopy characterization of the as‐spun PF26:PtOEP films, we determine the onset of PtOEP aggregation at 2–3 wt % PtOEP content. The analysis of the photophysical data is based on the use of modified Stern–Volmer photokinetic models that are appropriate for the solid state. A static component in the PL quenching of PF26 is revealed for PtOEP contents below 2 wt %. The modified Stern–Volmer kinetic scheme further suggests that co‐aggregation effects between PF26 and PtOEP are operative with an association constant of ground state complex formation kbind ~15–17 M ?1. The involvement of the ground state heterospecies in the TTA‐mediated PF26 up‐converted luminescence is discussed. The participation of an electron‐exchange step, in the excited state energy transfer pathway between PtOEP and PF26, is proposed for the activation mechanism of the PF26 up‐converted fluorescence.  相似文献   

9.
Novel nanostructured materials, such as aluminum oxide (AlOOH), silicon oxide (SiO2) or zirconium oxide (ZrO2) embedded into PVA, were investigated as potential matrices to incorporate organometallic compounds (OMCs) for the development of optical oxygen-sensitive sensors which make use of the principle of luminescence quenching.In order to assess the benefits and drawbacks of the nanoporous material, the luminescence quantum yield and the Stern-Volmer constants were investigated and compared with the values shown for the same OMCs solubilized in polymer films (polystyrene). Referred to polymer films, the incorporation of the dyes into nanoporous membranes increased the Stern-Volmer constant by more than a factor of 100. Their response time was less than 1 s and the optode membranes were stable at room temperature for at least 9 months. Sterilization by autoclavation and gamma irradiation resulted in a marginal loss in activity. The photostability and sterilizability of the oxygen-sensitive membranes and the performance of the optodes with respect to of different types of metal oxides are discussed in the paper, as well as the influence of the total pore volume (TPV), the pore diameter (PD), the transparency of the film and the geometry of the pores. The OMCs used in this work were: ETHT-3003 (tris(4,7-bis(4-octylphenyl)-1,10-phenanthroline) ruthenium(II)), N-926 (bis(2-phenylpyridinyl)-N4,N4,N4′,N4′-tetramethyl-(4,4′-diamine-2,2′-bipyridine) iridium(III) chlorate), N-833 (tetrabutylammonium bis(isothiocyanate) bis(2-phenylpyridinyl)-iridium(III)) and N-837 (tetrabutylammonium bis(cyanate) bis(2-phenylpyridinyl)-iridium(III)).  相似文献   

10.
In this work, aluminium (Alclad 2024‐T3) substrates were cleaned by an r.f. (13.56 MHz) plasma, using argon (Ar), oxygen (O2) and a mixture of O2/Ar (50:50) gases. The effectiveness of plasma cleaning was checked in situ using X‐ray photoelectron spectroscopy (XPS) and ex situ using water contact angle measurements. XPS O/Al surface atomic ratios are in excellent agreement with those of the crystalline boehmite and the pseudoboehmite. Oxygen O 1s peak‐fitting was used to quantify the proportion of hydroxyl ions and the functional composition on the aluminium surface: the surface cleaned with O2 plasma contains 50% of aluminium hydroxides, the ones cleaned with Ar plasma and with Ar/O2 plasma contain, respectively, 25 and 37% hydroxyl ions. The binding energy separation between Al 2p and O 1s is characteristic of AlO(OH). Thin SiOx films were subsequently deposited from a mixture of hexamethyldisiloxane (HMDSO) and oxygen. In the absence of oxygen, a hydrophobic (Θ≥ 100° ) film characteristic of polydimethylsiloxane (PDMS) is formed: polysiloxane‐like thinner films (SiOx) are obtained with the introduction of oxygen. XPS and contact angle measurements confirmed both the composition and the structure of these films. More importantly, contact angle measurements using different liquids and interpreted with the van Oss‐Good‐Chaudhury theory allowed determination of the surface free energy of the deposited films: the calculated values of surface tension of the film formed from HMDSO/O2: (50/50) are in excellent agreement with those of reference silica‐based materials such as a silicon wafer and cleaned glass. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Vibrational analysis of the vapor 3nπ* phosphorescence for three isotopic benzaldehydes (B-h6, B-1d1, B-Rd5) shows that the out-of-plane aldehyde hydrogen wagging vibration (ν26) is the most active non-totally symmetric mode in the spectrum. Since the intensity of 2620 ? 2610 the mechanism of ν26 activity is primarily as a Franck—Condon mode. The only other out-of-plane mode definitely attributed to the vapor phosphorescence is the weakly active CHO torsional vibration (ν36) with I (3610) > I (2610). Other Franck—Condon modes are ν7, ν25, ν20, ν17 and ν8.  相似文献   

12.
Cu-O layers were deposited on Si-<100> wafers at 90°?C by means of reactive magnetron sputtering ion plating (R-MSIP). A Cu-target was sputtered in rf-mode by an oxygen/argon plasma, and the influence of the oxygen partial pressure on composition, structure, texture and morphology of the Cu-O layers was investigated. The analysis with EPMA, XRD, HEED and SEM yielded the following results: with an appropriate setting of the oxygen partial pressure, the oxygen content of the films could be controlled between 0 and 50 at-%. XRD bulk structure analysis shows changes in the crystal structure of the films with increasing oxygen content from the fcc structure of Cu, followed by the sc structure of Cu2O (cuprite), the tetragonal structure of Cu3 2+Cu2 1+O4 (paramelaconite) to the monoclinic structure of CuO (tenorite). As revealed by HEED, the structure of the near-surface region of the latter two is the same as that of the bulk, whereas in the case of the films with fcc bulk structure, due to oxidation by air, the surface has the sc structure of Cu2O, and in the case of the film with the sc structure, a monoclinic surface structure of CuO is observed. SEM analyses detected a disordered columnar growth of all Cu-O films.  相似文献   

13.
The open-circuit behavior of iodine films formed on platinum by electrooxidation of iodide was studied at rotating disk and rotating ring-disk electrodes. The potential transient and ring current transient at open circuit for cI?>0.012 M can be explained by assuming: (1) convective-diffusion controlled dissolution of the film; (2) establishment of the I2+I?→ I3? equilibrium; (3) establishment of the I2 (solid) →I2 (solution) equilibrium. The behavior at lower concentrations of cI? suggests that convective-diffusion control is absent.  相似文献   

14.
Clenbuterol hydrochloride (CLB) could catalyze NaIO4 oxidation of eosine Y (R), which caused the room temperature phosphorescence (RTP) signal of R to quench sharply. The ΔIP (=IP2 − IP1, IP2 was RTP intensities of reagent blank and IP1 was RTP intensities of test solution) of the system was directly proportional to the content of CLB. According to that academic thought, a new solid substrate-room temperature phosphorimetry (SS-RTP) for the determination of trace CLB has been established. This method has high sensitivity (detection limit (LD): 0.021 zg spot−1, corresponding concentration: 5.2 × 10−20 g mL−1) and good selectivity (Er = ±5%, interfering species were of no interference). It has been applied to the determination of residual CLB in the practical samples. The results were verified using HPLC and GC/MS methods. The reaction mechanism of catalytic SS-RTP for the determination of residual CLB was also discussed.  相似文献   

15.
Ion selective and complexing properties of 1,5-bis[2-(dioxyphosphoryl-4-methoxy)phenoxy]-3-oxapentane dihydrate H4M2 · 2H2O (I) were described. X-ray diffraction analysis for compound I was performed. The crystals are orthorhombic, a = 7.9818(16) ?, b = 30.553(6) ?, c = 9.0559(17) ?, V = 2208.5(8) ?3, Z = 4, space group Pnma, R = 0.0500 over 1372 reflections with I > 2??(I). In I, the H4M2 molecules are combined by hydrogen bonds (HB) with two crystallographically independent H2O(7) and H2O(8) molecules to give neutral H4M2 · 2H2O aggregates. The HB between the phosphoryl and hydroxyl oxygen atoms of the aggregates and the donor O(7)-H??O(8) HB give rise to a layered structure. Conclusions about the Cu(H2M2) compound structure were drawn based on the X-ray diffraction, DTA, and vibrational spectroscopy data.  相似文献   

16.
LiMn2O4 thin films with different crystallizations were respectively grown at high, medium and low temperatures by pulsed laser deposition (PLD). Structures, morphologies and electrochemical properties of these three types of thin films were comparatively studied. Films grown at high temperature (?873 K) possessed flat and smooth surfaces and were highly crystallized with different textures and crystal sizes depending on the deposition pressure of oxygen. However, films deposited at low temperature (473 K) had rough surfaces with amorphous characteristics. At medium temperature (673 K), the film was found to consist mainly of nano-crystals less than 100 nm with relatively loose and rough surfaces, but very dense as observed from the cross-section. The film deposited at 873 K and 100 mTorr of oxygen showed an initial discharge capacity of 54.3 μAh/cm2 μm and decayed at 0.28% per cycle, while the amorphous film had an initial discharge capacity of 20.2 μAh/cm2 μm and a loss rate of 0.29% per cycle. Compared with the highly crystallized and the amorphous films, nano-crystalline film exhibited higher potential, more capacity and much better cycling stability. As high as 61 μAh/cm2 μm of discharge capacity can be achieved with an average decaying rate of only 0.032% per cycle up to 500 cycles. The excellent performance of nano-crystalline film was correlated to its microstructures in the present study.  相似文献   

17.
A robust optical composite thin film dissolved oxygen sensor was fabricated by ionically trapping the dye ruthenium(II) tris(4,7-diphenyl-1,10-phenanthroline) dichloride in a blended fluoropolymer matrix consisting of Nafion® and Aflas®. Strong phosphorescence, which was strongly quenched by dissolved oxygen (DO), was observed when the sensor was immersed in water. The sensor was robust, optically transparent, with good mechanical properties. Fast response, of a few seconds, coupled with sensitivity of about 0.1 mg L−1 (DO) over the range 0-30 mg L−1 and resistance to leaching, were also exhibited by this system. The Stern-Volmer (SV) plot exhibited slight downward turning at all oxygen concentrations. A linear plot was obtained when the SV equation was modified to account for the varying sensitivity of dye molecules in the matrix to the quencher. Good long term stability was observed.  相似文献   

18.
New types of polyurethanes (PUs) were prepared from condensation polymerization of isophorone diisocyanate (IPDI) with various combination of 9-butyl-3,6-bis(4-hydroxyphenyl)carbazole (Cz) and 2,5-bis(4-hydroxyphenyl)-1,3,4-oxadiazole (OXD), and end-capped with 4-tert-butyl phenol. The Cz-OXD PUs can also be used as host for phosphorescent dye. Red EL emission was obtained when Ir(btp)2(acac) or Ir(2-phq)2(acac) was used as the phosphorescent dyes in Cz-OXD (3:1) PU. Maximum brightness of 394 cd/m2 and EL efficiency of 1 cd/A were achieved for the Ir(2-phq)2(acac) base device. In addition, white light PLED was demonstrated when co-dopant of Ir(btp)2(acac) and Firpic were used.  相似文献   

19.
A kind of non-conjugated blue luminescent polymer based on fluorene and benzoxazole was synthesized via solution condensation polymerization from 2,2-bis(3-amino-4-hydroxyphenyl)-propane and 2,7-dicarboxyl-9,9-dioctyl-fluorene and was characterized with H NMR, FT-IR, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), UV-vis absorption and photoluminescence (PL) spectroscopy. The polymer displayed the maximum photoluminescence emission peak at 415 nm and showed high PL spectroscopic stability. The green-to-blue emission intensity ratio IGreen/IBlue is only 0.073 even after thermal annealing at 150 °C for 30 h. After being exposed to UV light for 30 min, no bathochromic emission or obvious crosslink is observed. The common phenomenon of greenish blue emission of fluorene-based polymer around 525 nm has been effectively restrained in this polymer by introducing the isopropylidene group into the backbone of polymer.  相似文献   

20.
陈芃  谭欣  于涛 《物理化学学报》2012,28(9):2162-2168
采用对向靶磁控溅射法在不同气压和Ar/O2流量比条件下, 以氟化SnO2 (FTO)导电玻璃为基底制备了多晶TiO2薄膜. 台阶仪测量结果显示所制备TiO2薄膜的平均厚度约为200 nm. 随着溅射气压的升高, TiO2薄膜由锐钛矿与金红石混晶结构转变为纯锐钛矿结构. 分别采用场发射扫描电镜(FESEM)和原子力显微镜(AFM)分析了不同气压和Ar/O2流量比对TiO2薄膜表面形貌的影响, 结果显示TiO2薄膜的表面粗糙度随溅射总气压和Ar/O2流量比的增加而增大. 以初始浓度为100×10-6 (体积分数)的异丙醇(IPA)气体为目标物检测所制备TiO2薄膜的光催化性能, 并分析该气相光催化反应的机理, 在紫外照射条件下异丙醇先氧化为丙酮再被氧化为CO2.当总溅射气压为2.0 Pa、Ar/O2流量比为1:1时, 溅射所得TiO2薄膜具备最优光催化活性并可在IPA降解反应中保持较高的催化活性和稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号