首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A 3D framework assembly based on the Keggin tungstophosphate POM with silver (I) transition metal and N-ligand organic moiety and of formula [Ag(4,4′-bipy)](OH){[Ag(4,4′-bipy)]2[PAgW12O40]}·3.5H2O (1) (bipy=bipyridine) has been synthesized by hydrothermal method and structurally characterized. The crystal of 1 belongs to triclinic, space group P-1, Mr=3857.27, , , , α=85.7249(5)°, β=72.8795(5)°, γ=79.9543(5)°, , Z=1, . The final statistics based on F2 are GOF=1.045, R1=0.0326 and wR2=0.0843 for I>2σ(I). X-ray diffraction analysis revealed that the molecular structure of 1 consists of a neutral fragment {[AgI(4,4′-bipy)]2[PAgIWVI12O40]}, [AgI(4,4′-bipy)]+ cation, hydroxide anion and lattice water molecules. The {[AgI(4,4′-bipy)]2[PAgIWVI12O40]} subunits are interconnected through Ag(I) with bipyridine ligands, both surface bridging and terminal oxygen atoms of polyoxoanions (POMs) to represent a novel three-dimensional (3D) polymer with 1D elliptic channels. Meanwhile, the [AgI(4,4′-bipy)]+ cations are also linked each other to form 1D chains, and embedded in 1D elliptic channels.  相似文献   

2.
We have prepared polycrystalline samples of Zn(C3H3N2)2 by a liquid-mix technique. Characterization of the obtained samples has been performed with the aid of elemental, thermogravimetric, infrared spectra and X-ray powder diffraction analysis. We have measured electric permittivity (ε′, ε″), ac-conductivity (σac), magnetic susceptibility (χ) and specific heat (Cp). The obtained data indicate that this material is a new diamagnetic insulator. A maximum around is found in CpT−3, and it is suggested that in addition to the Debye lattice contribution, there exists a low-frequency mode assigned as an Einstein mode contribution to the total specific heat. As a main result of the study, we found ε′ to be constant in a wide temperature range and to have a small value of 2.3 at room temperature. This feature in combination with other properties like crystallization, good thermal stability (up to 400°C), weak moisture sensitivity and simple synthesis makes Zn(C3H3N2)2 to be a promising candidate for good insulating material in various applications.  相似文献   

3.
4.
Six novel ionic phosphine ligands with a cobaltocenium backbone, 1,1′-bis(dicyclohexylphosphino) cobaltocenium hexafluorophosphate () (1a), 1,1′-bis(di-iso-propylphosphino) cobaltocenium hexafluorophosphate () (2a), 1,1′-bis(di-tert-butylphosphino) cobaltocenium hexafluorophosphate () (3a), and the monophosphine ligand (Cc+ = cobaltocenium; R = Cy, 1b; R = i-Pr, 2b; R = t-Bu, 3b) were synthesized and characterized by elemental analysis, spectroscopy, and X-ray diffraction techniques. These ligands are air-stable and useful for Suzuki coupling reactions in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (), enabling high catalytic activity.  相似文献   

5.
6.
7.
Three different N-donors L, namely N-ethyl-N′-3-pyridyl-imidazolidine-4,5-dione-2-thione (1), N,N′-bis(3-pyridylmethyl)-imidazolidine-4,5-dione-2-thione (2), and tetra-2-pyridyl-pyrazine (3), bearing one, two and four pyridyl substituents, respectively, have been reacted with halogens X2 (X = Br, I) or interhalogens XY (X = I; Y = Cl, Br). CT σ-adducts L · nXY, bearing linear N?XY moieties (L = 3; X = I; Y = Br, I; n = 2), and salts containing the protonated cationic donors HnLn+ (L = 1 − 3; n = 1, 2, 4), counterbalanced by Cl, Br, , , , , I2Br, , or anions, have been isolated. Among the reactions products, (H1+)Cl, (H1+)Br, , , and 3 · 2IBr have been characterised by single-crystal X-ray diffraction. The nature of the products has been elucidated based on elemental analysis and FT-Raman spectroscopy supported by MP2 and DFT calculations.  相似文献   

8.
Employing 4,4′-bipyridine as a bridged ligand, a new three-dimensional (3-D) hybrid zinc phosphate [Zn2(HPO4)2(4,4′-bipy)]·3H2O has been prepared under hydrothermal conditions and characterized by single crystal X-ray diffraction. This compound crystallizes in the monoclinic space group C2/c, with cell parameters, , , , β=90.21(3)°, and Z=4. The connectivity of the ZnO3N and HPO4 tetrahedra results in a 2-D neutral layer that with interesting 4,82 net along the bc plane. Furthermore, the 4,4′-bipyridine molecule links the 4,82 net into a 3-D structure. The water molecules sit in the middle of the channels and interact with the framework via hydrogen bonds. The compound exhibits intense photoluminescence at room temperature.  相似文献   

9.
Anion sensing by Phenazine-based urea/thiourea receptors   总被引:1,自引:0,他引:1  
The novel colorimetric receptors 2,3-bis-N-(9,10-diaza-anthracen-1-yl)-N′-phenylurea and 2,3-bis-N-(9,10-diaza-anthracen-1-yl)-N′-phenylthiourea have been prepared by the reaction of 2,3-diaminophenazine with phenylisocyanate and phenylisothiocyanate, respectively, in quantitative yields. The interaction and colorimetric sensing properties of receptor = 2 and 3 with different anions were investigated by naked eye, UV-vis and fluorescence spectroscopy in DMSO. The receptors effectively and selectively recognized biologically important F, CH3COO, H2P in the presence of other anions, such as Cl, Br, I and HS in DMSO.  相似文献   

10.
The disordered structures and low temperature dielectric relaxation properties of Bi1.667Mg0.70Nb1.52O7 (BMN) and Bi1.67Ni0.75Nb1.50O7 (BNN) misplaced-displacive cubic pyrochlores found in the Bi2O3-MIIO-Nb2O5 (M=Mg, Ni) systems are reported. As for other recently reported Bi-pyrochlores, the metal ion vacancies are found to be confined to the pyrochlore A site. The B2O6 octahedral sub-structure is found to be fully occupied and well-ordered. Considerable displacive disorder, however, is found associated with the O′A2 tetrahedral sub-structure in both cases. The A-site ions were displaced from Wyckoff position 16d (, , ) to 96 h (, , ) while the O′ oxygen was shifted from position 8b (, , ) to Wyckoff position 32e (, , ). The refined displacement magnitudes off the 16d and 8b sites for the A and O′ sites were 0.408 Å/0.423 Å and 0.350 Å/0.369 Å for BMN/BNN, respectively.  相似文献   

11.
The crystal structures of the title compounds were solved using the single-crystal X-ray diffraction technique. At room temperature CsKSO4Te(OH)6 was found to crystallize in the monoclinic system with Pn space group and lattice parameters: ; ; ; β=106.53(2)°; ; Z=4 and . The structural refinement has led to a reliability factor of R1=0.0284 (wR2=0.064) for 7577 independent reflections. Rb1.25K0.75SO4Te(OH)6 material possesses a monoclinic structure with space group P21/a and cell parameters: ; ; ; β=106.860(10)°; ; Z=4 and . The residuals are R1=0.0297 and wR2=0.0776 for 3336 independent reflections. The main interest of these structures is the presence of two different and independent anionic groups (TeO66− and SO42−) in the same crystal.Complex impedance measurements (Z*=ZiZ) have been undertaken in the frequency and temperature ranges 20-106 Hz and 400-600 K, respectively. The dielectric relaxation is studied in the complex modulus formalism M*.  相似文献   

12.
The novel compound Ca2Co1.6Ga0.4O5 with brownmillerite (BM) structure has been prepared from citrates at 950 °C. The crystal structure of Ca2Co1.6Ga0.4O5 was refined, from neutron powder diffraction (NPD) data, in space group Pnma, , , , χ2=1.798, , Rwp=0.0378 and Rp=0.0292. On the basis of the NPD refinement the compound was found to be a G-type antiferromagnet (space group Pnma) at room temperature, with the magnetic moments of cobalt atoms directed along chains of tetrahedra in the BM structure. Electron diffraction and electron microscopy studies revealed disorder in the crystallites, which can be interpreted as the presence of slabs with BM-type structure of Pnma and I2mb symmetry.  相似文献   

13.
A new zinc phosphite cluster, Zn2(4,4′-dmbpy)2(H2PO3)41, and a new chainlike zinc phosphate, Zn2(5,5′-dmbpy)2(HPO4)(H2PO4)22, have been synthesized under hydrothermal conditions (4,4′-dmbpy=4,4′-dimethyl-2,2′-dipyridy, 5,5′-dmbpy=5,5′-dimethyl-2,2′-dipyridy). Compound 1 is a molecular zinc phosphite constructed from ZnO3N2 trigonal bipyramids, H2PO3 pseudo-pyramids and 4,4′-dmbpy ligands. Compound 2 possesses a 1D chainlike framework constructed from ZnO3N2 trigonal bipyramids, HPO4 tetrahedra, H2PO4 tetrahedra and 5,5′-dmbpy ligands. Both compounds 1 and 2 exhibit intensive photoluminescence originated from the intraligand π-π* transitions. Crystal data: 1, monoclinic, P21/n, , , , β=110.857(3)°, , Z=2, R1=0.0297, wR1=0.0801; 2, triclinic, P-1, , , , α=64.995(9)°, β=65.952(9)°, γ=65.296(8)°, , Z=2, R1=0.0418, wR1=0.1010.  相似文献   

14.
A macroporous silica-based N,N,N′,N′-tetraoctyl-3-oxapentane-1,5-diamide (TODGA) polymeric composite (TODGA/SiO2-P) was synthesized. It was done through impregnation and immobilization of TODGA molecule into the pores of the SiO2-P particles utilizing a vacuum sucking technique. The macroporous SiO2-P particles were the silica-based organic/inorganic composite synthesized by immobilizing styrene-divinylbenzene copolymer inside SiO2 through the complicated polymerization reaction. The adsorption of rare earth (RE(III)) elements onto TODGA/SiO2-P was investigated in HNO3 solution containing diethylenetriaminepentaacetic acid (DTPA), an acidic multi-dentate chelating agent. It was found that in the presence of 0.05 M DTPA, and H+ had significant effect on the TODGA/SiO2-P adsorption due to the competition reactions of RE(III) with different species, H4DTPA and H2DTPA3−. With an increase in the concentration of from 0.115 M to 3.015 M, the adsorption of RE(III) onto TODGA/SiO2-P increased noticeably. On the other hand, RE(III) showed strong adsorption at 0.1 M H+, weak adsorption at around pH 2, and no adsorption in excess of pH 2.3. In a 0.1 M H+-0.115 M -0.05 M DTPA solution, a change of the distribution coefficient of RE(III) onto TODGA/SiO2-P with an increase in atomic number of RE(III) from La(III) to Lu(III) was investigated. The silica-based TODGA/SiO2-P polymeric composite showed strong adsorption for heavy RE(III) over the light one. In a 0.01 M H+-1.0 M -0.05 M DTPA solution, the effect of the ratio of solid phase to liquid one on the relationship of the distribution coefficient of RE(III) with the change in atomic number of RE(III) was also studied. Based on the complicated disassociation equilibrium of DTPA, the influence of the concentrations of and H+ on the adsorption of TODGA/SiO2-P for RE(III) was demonstrated. This makes the partitioning of RE(III) and MA(III) together from high level liquid waste (HLLW) by the polymeric composite TODGA/SiO2-P promising.  相似文献   

15.
Homopolymerization of methyl acrylate (MA) and methyl methacrylate (MMA) by atom transfer radical polymerization (ATRP) were carried out at 90 °C using methyl-2-bromopropionate (MBP) as initiator, copper halide (CuX, X=Cl, Br) as catalyst, 2,2-bipyridine (bpy) or N,N,N,N,N-pentamethyldiethylenetriamine (PMDETA) as ligand in 1-butanol (less polar and containing OH) and acetonitrile (more polar) solvents. It was found that with CuCl/bpy catalyst ATRP of MA and MMA in 1-butanol proceeded faster than that in acetonitrile. The rate of ATRP of MA and MMA in acetonitrile and 1-butanol was comparable when CuCl/PMDETA used as catalyst system. The number-average molecular weights increased with conversion and polydispersities were low . The ATRP of MA and MMA with vinyl acetate telomer having trichloromethyl end group (PVAc-CCl3) were also used to synthesize new block copolymers. The structures and molecular weight of synthesized PVAc-b-PMA and PVAc-b-PMMA were characterized by 1H NMR, FTIR spectroscopy and gel permeation chromatography (GPC) and shown that the block copolymers were novel.  相似文献   

16.
17.
The organic-inorganic hybrid materials vanadium oxide [VIVO2(phen)2]·6H2O (1) and [(2,2′-bipy)2VVO2](H2BO3)·3H2O (2) have been conventional and hydrothermal synthesized and characterized by single crystal X-ray diffraction, elemental analyses, respectively. Although the method and the ligand had been used in the syntheses of the compounds (1) and (2) are different, they almost possess similar structure. They all exhibit the distorted octahedral [VO2N4] unit with organonitrogen donors of the phen and 2,2′-bipy ligands, respectively, which coordinated directly to the vanadium oxide framework. And they are both non-mixed-valence complexes. But the compound (1) is isolated, and the compound (2) consists of a cation of [(2,2′-bipy)2VVO2]+ and an anion of (H2BO3). So the valence of vanadium of (1) and (2) are tetravalence and pentavalence, respectively. Meanwhile it is noteworthy that π-π stacking interaction between adjacent phen and 2,2′-bipy groups in compounds 1 and 2 also play a significant role in stabilization of the structure. Thus, the structure of [VIVO2(phen)2]·6H2O and [(2,2′-bipy)2VVO2](H2BO3)·3H2O are both further extended into interesting three-dimensional supramolecular. Crystal data: (1) Triclinic, a=8.481(4), b=12.097(5), and α=66.32(2), β=82.97(3), and γ=82.59(4)°, Z=2, R1=0.0685, wR2=0.1522. (2) Triclinic, a=6.643(13), b=11.794(2), and α=101.39(3), β=101.59(3), and γ=97.15(3)°, Z=2, R1=0.0736, wR2=0.1998.  相似文献   

18.
Unlike ordering of the octahedral B-site cations, ordering of the larger A-site cations in stoichiometric perovskites is rare. Herein the A- and B-site ordering characteristics of several double perovskites with AABB′O6 stoichiometry have been investigated. The compounds investigated include NaLaMgWO6, NaLaMgTeO6, NaLaScNbO6, NaLaScSbO6, NaLaTi2O6, and NaLaZr2O6. Group theoretical methods are used to enumerate the possible structures of AABBX6 double perovskites that result from the combination of rock salt ordering of the B-site cations, layered ordering of the A-site cations, and octahedral tilting distortions. This combination results in 12 possible structures in addition to the aristotype. Among the compounds investigated only NaLaMgWO6 and NaLaScNbO6 show significant long-range ordering of the A-site cations, Na+ and La3+. A complete structural characterization is presented for NaLaMgWO6. This compound possesses monoclinic C2/m (#12) space group symmetry, with unit cell dimensions of , , , β=90.136(1)° at room temperature. The results presented here show that in AABB′O6 perovskites layered ordering of A-site cations creates a bonding instability that is compensated for by a second-order Jahn-Teller distortion of the B′ cation. These two distortions are synergistic and the removal of one leads to the disappearance of the other.  相似文献   

19.
20.
Two new (NaSrP, Li4SrP2) and two known (LiSrP, LiBaP) ternary phosphides have been synthesized and characterized using single crystal X-ray diffraction studies. NaSrP crystallizes in the non-centrosymmetric hexagonal space group (#189, a=7.6357(3) Å, c=4.4698(3) Å, V=225.69(2) Å3, Z=3, and R/wR=0.0173/0.0268). NaSrP adopts an ordered Fe2P structure type. PSr6 trigonal prisms share trigonal (pinacoid) faces to form 1D chains. Those chains define large channels along the [001] direction through edge-sharing. The channels are filled by chains of PNa6 face-sharing trigonal prisms. Li4SrP2 crystallizes in the rhombohedral space group (#166, a=4.2813(2) Å, c=23.437(2) Å, V=372.04(4) Å3, Z=3, and R/wR=0.0142/0.0222). In contrast to previous reports, LiSrP and LiBaP crystallize in the centrosymmetric hexagonal space group P63/mmc (#194, a=4.3674(3) Å, c=7.9802(11) Å, V=131.82(2) Å3, Z=2, and R/wR=0.0099/0.0217 for LiSrP; a=4.5003(2) Å, c=8.6049(7) Å, V=150.92(2) Å3, Z=2, and R/wR=0.0098/0.0210 for LiBaP). Li4SrP2, LiSrP, and LiBaP can be described as Li3P derivatives. Li atoms and P atoms make a graphite-like hexagonal layer, . In LiSrP and LiBaP, Sr or Ba atoms reside between layers to substitute for two Li atoms of Li3P, while in Li4SrP2, Sr substitutes only between every other layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号