首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A series of exo-methylene 6-membered ring conjugated dienes, which are directly or indirectly obtained from terpenoids, such as β-phellandrene, carvone, piperitone, and verbenone, were radically polymerized. Although their radical homopolymerizations were very slow, radical copolymerizations proceeded well with various common vinyl monomers, such as methyl acrylate (MA), acrylonitrile (AN), methyl methacrylate (MMA), and styrene (St), resulting in copolymers with comparable incorporation ratios of bio-based cyclic conjugated monomer units ranging from 40 to 60 mol% at a 1:1 feed ratio. The monomer reactivity ratios when using AN as a comonomer were close to 0, whereas those with St were approximately 0.5 to 1, indicating that these diene monomers can be considered electron-rich monomers. Reversible addition fragmentation chain-transfer (RAFT) copolymerizations with MA, AN, MMA, and St were all successful when using S-cumyl-S’-butyl trithiocarbonate (CBTC) as the RAFT agent resulting in copolymers with controlled molecular weights. The copolymers obtained with AN, MMA, or St showed glass transition temperatures (Tg) similar to those of common vinyl polymers (Tg ~ 100 °C), indicating that biobased cyclic structures were successfully incorporated into commodity polymers without losing good thermal properties.  相似文献   

2.
Poly(dimethylsiloxane)‐containing diblock and triblock copolymers were prepared by the combination of anionic ring‐opening polymerization (AROP) of hexamethylcyclotrisiloxane (D3) and nitroxide‐mediated radical polymerization (NMRP) of methyl acrylate (MA), isoprene (IP), and styrene (St). The first step was the preparation of a TIPNO‐based alkoxyamine carrying a 4‐bromophenyl group. The alkoxyamine was then treated with Li powder in ether, and AROP of D3 was carried out using the resulting lithiophenyl alkoxyamine at room temperature, giving functional poly(D3) with Mw/Mn of 1.09–1.16. NMRPs of MA, St, and IP from the poly(D3) at 120 °C gave poly(D3b‐MA), poly(D3b‐St), and poly(D3b‐IP) diblock copolymers, and subsequent NMRPs of St from poly(D3b‐MA) and poly(D3b‐IP) at 120 °C gave poly(D3b‐MA‐b‐St) and poly(D3b‐IP‐b‐St) triblock copolymers. The poly(dimethylsiloxane)‐containing diblock and triblock copolymers were analyzed by 1H NMR and size exclusion chromatography. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6153–6165, 2005  相似文献   

3.
The synthesis of poly(styrene‐maleic anhydride) copolymers by frontal polymerization is reported. The propagating front can be achieved if the mole fraction of styrene (St) is 0.3 ≤ St ≤ 0.7 in the feed. Depending on the St/MA mole ratio alternating St‐MA‐St‐MA copolymers (St/MA ≤ 1) or (St‐MA)n‐(St‐St‐St)m block copolymers (St/MA > 1) are formed. The microstructure of the copolymers obtained was estimated by means of 13C NMR spectroscopy.  相似文献   

4.
Polystyrene-block-poly(5,6-benzo-2-methylene-1,3-dioxepane) (PSt-b-PBMDO), poly(methyl methacrylate)-block-PBMDO (PMMA-b-PBMDO) and poly(methyl acrylate)-block-PBMDO (PMA-b-PBMDO) were synthesized by two-step atom transfer radical polymerization (ATRP) of conventional vinyl monomers, then BMDO. First, the polymerization of St, or MMA, or MA was realized by ATRP with ethyl α-bromobutyrate (EBrB) as initiator in conjunction with CuBr and 2,2-bipyridine (bpy). After isolation, polymers with terminal bromine, PSt-Br, PMMA-Br and PMA-Br, were obtained. Second, the ATRP of BMDO was performed by using macroinitiator, PSt-Br (or PMMA-Br, PMA-Br) in the presence of CuBr/bpy. The structures of block copolymers were characterized by 1H NMR spectra. Molecular weight and polydispersity index were determined on gel permeation chromatograph. Among the block copolymers obtained, PMA-b-PBMDO shows the most narrow molecular weight distribution.  相似文献   

5.
Polymerization of three cyclic ketene acetals: i.e., 5,6-benzo-2-methylene-1,3-dioxepane (BMDO), 2-methylene-4-phenyl-1,3-dioxolane (MPDO) and 4, 7-dimethyl-2-methylene-1, 3-dioxepane(DMMDO) were carried out in the presence ofethyl α-bromobutyrate/CuBr/2, 2'-bipyridine respectively. The structures of poly(BMDO), poly(MPDO) and poly(DMMDO)were characterized by ~1H and ~(13)C-NMR spectra. The effects of monomer structure on the behavior of atom transfer freeradical ring-opening polymerization were investigated and the mechanism of controlled free radical ring-openingpolymerization was discussed.  相似文献   

6.
The amphiphilic π-shaped copolymers with narrow molecular weight distribution (Mw/Mn = 1.04-1.09) based on polystyrene (PSt) and poly(ethylene glycol) have been synthesized successfully. The reversible addition-fragmentation transfer (RAFT) polymerization of St in the presence of dibenzyl trithiocarbonate and N,N′-azobis(isobutyronitrile) (AIBN) yielded macro RAFT agent PSt-SC(S)S-PSt, subsequent reaction with excess maleic anhydride (MAh) at 80 °C in tetrahydrofuran afforded the PSt-MAh-SC(S)S-MAh-PSt. It was used as RAFT agent in the RAFT polymerization of St, and finally the amphiphilic π-shaped copolymers were obtained by the reaction of MAh with hydroxyl-terminated poly(ethylene glycol methyl ether) at 90 °C for 48 h. Their structures were confirmed by FT-IR and 1H NMR spectra, and their molecular weight and molecular weight distribution were measured by gel permeation chromatography.  相似文献   

7.
Two bis(β‐ketoamino)copper [ArNC(CH3)CHC(CH3)O]2Cu ( 1 , Ar = 2,6‐dimethylphenyl; 2 , Ar = 2,6‐diisopropylphenyl) complexes were synthesized and characterized. Homo‐ and copolymerizations of methyl acrylate (MA) and 1‐hexene with bis(β‐ketoamino)copper(II) complexes activated with methylaluminoxane (MAO) were investigated in detail. MA was polymerized in high conversion (>72%) to produce the syndio‐rich atactic poly(methyl acrylate), but 1‐hexene was not polymerized with copper complexes/MAO. Copolymerizations of MA and 1‐hexene with 1 , 2 /MAO produced acrylate‐enriched copolymers (MA > 80%) with isolated hexenes in the backbone. The calculation of reactivity ratios showed that r(MA) is 8.47 and r(hexene) is near to 0 determined by a Fineman‐Ross method. The polymerization mechanism was discussed, and an insertion‐triggered radical mechanism was also proposed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1113–1121, 2010  相似文献   

8.
The copper(0)‐catalyzed living radical polymerization of acrylonitrile (AN) was investigated using ethyl 2‐bromoisobutyrate as an initiator and 2,2′‐bipyridine as a ligand. The polymerization proceeded smoothly in dimethyl sulphoxide with higher than 90% conversion in 13 h at 25 °C. The polymerization kept the features of controlled radical polymerization. 1H NMR spectra proved that the resultant polymer was end‐capped by ethyl 2‐bromoisobutyrate species. Such polymerization technique was also successfully introduced to conduct the copolymerization of styrene (St) and AN to obtain well‐controlled copolymers of St and AN at 25 °C, in which the monomer conversion of St could reach to higher than 90%. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
Radical copolymerizations of 2‐isothiocyanatoethyl methacrylate (ITEMA) and 2‐hydroxyethyl methacrylate (HEMA) or methacrylic acid (MAA) were examined, and fundamental properties of the obtained copolymers were investigated. The copolymerizations of various ITEMA/HEMA or ITEMA/MAA compositions proceeded effectively in THF or DMF by using 2,2′‐azobisbutyronitrile (AIBN) as an initiator, keeping the isothiocyanato groups and hydroxyl or carboxyl groups unchanged. Glass transition temperatures (Tg)s of poly(ITEMA‐co‐HEMA)s ranged from 68 to 100 °C, and they were thermally stable up to 200 °C. Meanwhile, Tgs of poly(ITEMA‐co‐MAA)s (ITEMA/MAA = 91/9, 76/24) were determined to be 91 and 109 °C, respectively. However, poly(ITEMA‐co‐MAA)s were thermally unstable, and significant weight loss was observed around 180 °C, which may be due to an addition of carboxyl groups to isothiocyanato groups followed by an elimination of COS to form amide structure in the copolymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5221–5229  相似文献   

10.
11.
Some features of radical ternary copolymerization of maleic anhydride (MA)–styrene (St)–acrylonitrile (AN) and n‐butyl methacrylate (BMA)–St–AN acceptor–donor–acceptor monomer systems have been revealed. The terpolymer compositions and kinetics of copolymerizations were studied in the initial and high conversion stages. The considerable divergence in the copolymer compositions was observed when a strong acceptor MA monomer was substituted with BMA having comparatively low acceptor character in the ternary system studied. Obtained results show that terpolymerization proceeded mainly through “complex” mechanism in the state of near binary copolymerization of St…MA (or BMA) and AN…St complexes only in the chosen ratios of complexed monomers. The terpolymers synthesized have high thermal stabilities (295–325 °C), which is explained by possible intermolecular fragmentation of AN‐units through cyclization and crosslinking reactions during thermotreatment in the isothermal heating conditions. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2652–2662, 2000  相似文献   

12.
The controlled/living radical polymerization of vinyl acetate (VAc) and its copolymerization with methyl acrylate (MA) were investigated in bulk or fluoroalcohols using manganese complex [Mn2(CO)10] in conjunction with an alkyl iodide (R? I) as an initiator under weak visible light. The manganese complex induced the controlled/living radical polymerization of VAc even in the fluoroalcohols without any loss of activity. The R? I/Mn2(CO)10 system was also effective for the copolymerization of MA and VAc, in which MA was consumed faster than VAc, and then the remaining VAc was continuously and quantitatively consumed after the complete consumption of MA. The 1H and 13C NMR analyses revealed that the obtained products are block copolymers consisting of gradient MA/VAc segments, in which the VAc content gradually increases, and homopoly(VAc). The use of fluoroalcohols as solvents increased the copolymerization rate, controllability of the molecular weights, and copolymerizability of VAc. The saponification of the VAc units in poly(MA‐grad‐VAc)‐block‐poly(VAc) resulted in the corresponding poly(MA‐co‐γ‐lactone)‐block‐poly(vinyl alcohol) due to the intramolecular cyclization between the hydroxyl and neighboring carboxyl groups in the gradient segments. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1343–1353, 2009  相似文献   

13.
Dendritic multifunctional macroinitiators having six and 12 TIPNO‐based alkoxyamines, TIPNO‐6 and TIPNO‐12 , were synthesized and used in the living radical polymerization of styrene (St), methyl acrylate (MA), N,N‐dimethylacrylamide (DMAAm), and isoprene (IP). The polymerizations of St initiated with TIPNO‐6 gave 6‐arm star polymers with narrow polydispersities of 1.14–1.18. In the polymerizations of MA initiated with TIPNO‐6 and TIPNO‐12 , the influences of added TIPNO on the polydispersity indexes (PDIs) of the resulting star polymers were first investigated, and this led to the successful formation of poly(MA) star polymers with narrow polydispersities (1.10–1.18). Moreover, the polymerizations of DMAAm and IP from TIPNO‐6 in the presence or absence of TIPNO were briefly investigated. The benzyl ether bonds of the poly(St) and poly(MA) star polymers were cleaved by treating with Me3SiI or Pd/C, and the resulting arm's parts were analyzed with SEC. The PDIs of the resulting arm parts were low (1.19–1.23), and the Mns agreed with the Mn,theor, indicating that the poly(St) and poly(MA) star polymers had well‐controlled arms. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4364–4376, 2007  相似文献   

14.
Nitroxide-mediated polymerization (NMP) was used to polymerize methacrylate-functionalized polyhedral oligomeric silsesquioxane, POSSMA, in a controlled manner with bio-based C13 methacrylate (C13MA) to improve the thermal stability of the latter by copolymerization (using 10 mol% acrylonitrile controlling comonomer). Kinetic experiments (80–110 °C) revealed the relatively low ceiling temperature of POSSMA (135 °C). Synthesis of poly(POSSMA-co-AN) with f AN,0 = 0.10 at 90 °C resulted in low dispersity (1.16) and relatively high conversion (~50%) after 3 hr in 50 wt% toluene. Assuming binary statistical copolymerizations, POSSMA was slightly less reactive than C13MA toward the propagating species (r POSSMA = 0.91 ± 0.07 and r C13MA = 1.94 ± 0.13). Incorporating POSSMA up to 68 mol% improved decomposition temperature of C13MA-based copolymers from 190 to 262 °C. Chain end fidelity of POSSMA-rich compositions was confirmed by subsequent chain extensions to make block and gradient copolymers. Differential scanning calorimetry revealed multiple transition temperatures in block copolymers, suggesting microphase separation. Powder X-ray diffraction confirmed crystalline domains ~30 nm in POSSMA-rich statistical copolymers while transmission electron microscopy revealed weakly ordered lamellar morphology for poly(C13MA-co-AN)-b-(POSSMA-co-AN) block copolymer at a smaller length scale. Oscillatory shear measurements of block copolymers indicated primarily viscous character below 200 s−1 but crossover above this frequency, indicating POSS–POSS interactions were increasing the elasticity of the block copolymers.  相似文献   

15.
Vinyl acetate and vinyl chloroacetate were copolymerized in the presence of a bis(trifluoro‐2,4‐pentanedionato)cobalt(II) complex and 2,2′‐azobis(4‐methoxy‐2,4‐dimethylvaleronitrile) at 30 °C, forming a cobalt‐capped poly(vinyl acetate‐co‐vinyl chloroacetate). The addition of 2,2,6,6‐tetramethyl‐1‐piperidinyloxy after a certain degree of copolymerization was reached afforded 2,2,6,6‐tetramethyl‐1‐piperidinyloxy‐terminated poly(vinyl acetate‐co‐vinyl chloroacetate) (PVOAc–MI; number‐average molecular weight = 31,000, weight‐average molecular weight/number‐average molecular weight = 1.24). A 1H NMR study of the resulting PVOAc–MI revealed quantitative terminal 2,2,6,6‐tetramethyl‐1‐piperidinyloxy functionality and the presence of 5.5 mol % vinyl chloroacetate in the copolymer. The atom transfer radical polymerization (ATRP) of styrene (St) was studied with ethyl chloroacetate as a model initiator and five different Cu‐based catalysts. Catalysts with bis(2‐pyridylmethyl)octadecylamine (BPMODA) or tris(2‐pyridylmethyl)amine (TPMA) ligands provided the highest initiation efficiency and best control over the polymerization of St. The grafting‐from ATRP of St from PVOAc–MI catalyzed by copper complexes with BPMODA or TPMA ligands provided poly(vinyl acetate)‐graft‐polystyrene copolymers with relatively high polydispersity (>1.5) because of intermolecular coupling between growing polystyrene (PSt) grafts. After the hydrolysis of the graft copolymers, the cleaved PSt side chains had a monomodal molecular weight distribution with some tailing toward the lower number‐average molecular weight region because of termination. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 447–459, 2007  相似文献   

16.
4-Vinylbenzocyclobutene ( 1 ) was prepared by the nickel-catalyzed coupling reaction of 4-bromobenzocyclobutene with vinylbromide in 70% yield. Radical homopolymerization of 1 at 60°C for 24 h afforded poly(4 vinylbenzocyclobutene) [poly( 1 )] in 89% yield and radical copolymerizations of 1 with styrene (St) or methyl methacrylate (MMA) were carried out to obtain the corresponding copolymers. The Q = 1.07, e = 0.046. As a model reaction of the polymer reaction of the polymer reaction of poly( 1 ) and poly(4-vinylbenzocyclobutene-co-styrene) [copoly( 1 -St)] with dienophiles, the Diels-Alder reaction of benzocyclobutene with N-phenylmaleimide (MI) or maleic anhydride (MANH) was carried out to determine the optimum reaction conditions. Under the optimum condition, the Diels-Alder reaction of poly( 1 ) and copoly( 1 -St) with MI and MANH in the presence of 4-tert-butyl-catechol as an inhibitor were carried out to yield the corresponding polymers in good yields. The properties (solubilities, Tg, and temperature of 10% weight loss) of the products obtained from the polymer reaction were different from these of poly( 1 ). © 1995 John Wiley & Sons, Inc.  相似文献   

17.
A well‐defined branched copolymer with PLLA‐b‐PS2 branches was prepared by combination of reversible addition‐fragmentation transfer (RAFT) polymerization, ring‐opening polymerization (ROP), and atom transfer radical polymerization (ATRP). The RAFT copolymerization of methyl acrylate (MA) and hydroxyethyl acrylate (HEA) yielded poly(MA‐co‐HEA), which was used as macro initiator in the successive ROP polymerization of LLA. After divergent reaction of poly(MA‐co‐HEA)‐g‐PLLAOH with divergent agent, the macro initiator, poly(MA‐co‐HEA)‐g‐PLLABr2 was formed in high conversion. The following ATRP of styrene (St) produced the target polymer, poly(MA‐co‐HEA)‐g‐(PLLA‐b‐PS2). The structures, molecular weight, and molecular weight distribution of the intermediates and the target polymers obtained from every step were confirmed by their 1H NMR and GPC measurements. DSC results show one T = 3 °C for the poly(MA‐co‐HEA), T = ?5 °C, T= 122 °C, and T = 157 °C for the branched copolymers (poly(MA‐co‐HEA)‐g‐PLLA), and T = 51 °C, T = 116 °C, and T = 162 °C for poly(MA‐co‐HEA)‐g‐(PLLA‐b‐PS2). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 549–560, 2006  相似文献   

18.
不饱和环状单体与烯类单体共聚所得的共聚物 ,已经或正在开发成一系列新的产品 .例如 ,水解后得到末端带有—OH,— SH,—COOH等官能团的聚苯乙烯、聚乙烯、聚甲基丙烯酸甲酯等的低聚物[1] ,用于制备新型聚酯和聚氨酯 ;与乙烯的共聚物可在细菌作用下彻底分解成脂肪酸或醇 ,可赋予聚合物生物降解活性 ;与双甲基丙烯酸酯等的共混物 ,可用于制作高强度补牙材料[2 ] 等 .以前报道的不饱和环状单体与烯类单体的共聚反应 ,均为无规共聚 ,而且是普通自由基引发聚合 ,不能控制分子量 ,分子量分布很宽 .原子转移自由基聚合是近几年发展起来的实现…  相似文献   

19.
2-Dimethylaminoethyl methacrylate (DMAEMA) and 2-diethylaminoethyl methacrylate (DEAEMA) block copolymers have been synthesized by using poly(ethylene glycol), poly(tetrahydrofuran) (PTHF) and poly(ethylene butylenes) macroinitiators with copper mediated living radical polymerization. The use of difunctional macroinitiator gave ABA block copolymers with narrow polydispersities (PDI) and controlled number average molecular weights (Mn’s). By using DMAEMA, polymerizations proceed with excellent first order kinetics indicative of well-controlled living polymerization. Online 1H NMR monitoring has been used to investigate the polymerization of DEAEMA. The first order kinetic plots for the polymerization of DEAMA showed two different rate regimes ascribed to an induction period which is not observed for DMAEMA. ABA triblock copolymers with DMAEMA as the A blocks and PTHF or PBD as B blocks leads to amphiphilic block copolymers with Mn’s between 22 and 24 K (PDI 1.24-1.32) which form aggregates/micelles in solution. The critical aggregation concentrations, as determined by pyrene fluorimetry, are 0.07 and 0.03 g dm−1 for PTHF- and PBD-containing triblocks respectively.  相似文献   

20.
Homopolymerization of methyl acrylate (MA) and methyl methacrylate (MMA) by atom transfer radical polymerization (ATRP) were carried out at 90 °C using methyl-2-bromopropionate (MBP) as initiator, copper halide (CuX, X=Cl, Br) as catalyst, 2,2-bipyridine (bpy) or N,N,N,N,N-pentamethyldiethylenetriamine (PMDETA) as ligand in 1-butanol (less polar and containing OH) and acetonitrile (more polar) solvents. It was found that with CuCl/bpy catalyst ATRP of MA and MMA in 1-butanol proceeded faster than that in acetonitrile. The rate of ATRP of MA and MMA in acetonitrile and 1-butanol was comparable when CuCl/PMDETA used as catalyst system. The number-average molecular weights increased with conversion and polydispersities were low . The ATRP of MA and MMA with vinyl acetate telomer having trichloromethyl end group (PVAc-CCl3) were also used to synthesize new block copolymers. The structures and molecular weight of synthesized PVAc-b-PMA and PVAc-b-PMMA were characterized by 1H NMR, FTIR spectroscopy and gel permeation chromatography (GPC) and shown that the block copolymers were novel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号