首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
老山汉墓土遗址中可溶-微溶盐导致遗址表面酥碱、起甲、泛白和块状脱落等病害较为严重.利用X射线荧光光谱(XRF)、X射线衍射仪(XRD)、X射线光电子能谱(XPS)以及离子色谱(IC)等方法测定了老山汉墓遗址不同取样位置及距遗址表面不同深度处可溶盐的成分及含量,并分析了盐分对遗址破坏的可能机制.结果表明,该遗址的主要有可溶盐有Na2SO4、Na2SO4·10H2O、Na Cl、Na12Mg7(SO4)13·15H2O,微溶盐有Ca SO4、Ca SO4·2H2O,此外还含有少量的Ca Cl2、KNO3、KCl、Mg Cl2、K2SO4、Mg SO4等盐分.随着取样深度增加,各盐分的种类及含量有所减少,此分布规律可能与可溶盐的赋存环境及水分运移有关.试验结果对于老山汉墓土遗址的保护措施具有一定的参考价值.  相似文献   

2.
Salt resistivity of poly (4-vinyl benzoic acid) (P4VBA) gel was investigated to compare with the super salt-resistivity that was found for poly (4-vinyl phenol)(P4VPh) gel containing an acidic proton and π-electron system. Poly(acrylic acid) (PAA) gel was also prepared and used as a reference gel containing only an acidic proton. P4VBA gel showed a moderate salt resistivity, which was less significant than that for P4VPh gel, in many kinds of inorganic salt solutions (MgCl2, LiCl, NaCl, KCl, CsCl, KI, KSCN, Na2SO4). On the other hand, PAA gel showed a drastic deswelling in the presence of concentrated MgCl2, LiCl, Na2SO4, and (NH4)2SO4 solutions, and a significant swelling for KSCN solution. These contrastive behaviors between P4VBA and PAA gels strongly suggest that the combination of acidic proton and π-electron system is essential and necessary for polymer gels to be endowed with the salt resistivity.  相似文献   

3.
Series of maleate monoester and diester monomers based on poly(ethylene glycol) monomethyl ether (MPEG) were copolymerized using the ionizable 2‐acrylamido‐2–methyl propane sulfonic acid (AMPS) via different dose rate of electron‐beam irradiation (40–150 kGy). The crosslinking of the copolymers were carried out in aqueous acidic solutions at pH 1 or in the presence of 1% N,N‐methylene bisacrylamide (MBA) as crosslinking agent. The final equilibrium water content and swelling capacities for the prepared hydrogels were determined in aqueous solutions at pH 1, 6.8, and 12 and in aqueous salt solutions at 298 K. Swelling equilibria for prepared hydrogels were determined in different molar salt solutions of NaCl, KCl, CaCl2, Na2SO4, K2SO4, and CaSO4. The swelling ratios of gels in pure water and in the salt solutions were found to depend on the counterion species in the increasing sequence of Ca2+, Na+ and K+. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
The influence of various salts on the atomization signal of lead has been examined by using a transverse heated atomic absorption spectrometer. To get more information about interference mechanisms, volatilization of salts has been studied by ion chromatographic analysis of the residue left on the furnace after drying or charring. The use of a Pd/Mg chemical modifier in these model solutions has also been examined. In 0.1 M chloride medium, NaCl, MgCl2 and CaCl2 do not interfere significantly. However, their different behaviour in the furnace, and particularly hydrolysis of MgCl2 influence greatly the charring curves of Pb. The use of a Pd/Mg modifier appears interesting only in the case of NaCl. Indeed, Pd stabilizes Pb sufficiently to permit the removal of NaCl by charring. In the case of MgCl2, Pb is not sufficiently stabilized to remove chloride through hydrolysis of MgCl2 or volatilization of MgCl2. In the presence of CaCl2, the Pb signal is delayed and coincides with the background absorption signal of CaCl2; the stabilization effect is not sufficient to eliminate CaCl2 by charring before atomization. At 0.1 M nitrate concentration, the presence of NaNO3, Mg(NO3)2, and particularly Ca(NO3)2, greatly modifies the atomization signal shape of Pb. Pb is more stabilized in nitrate medium, but losses are observed at the decomposition step of nitrate salts. In this medium, the stabilization effect of Pd leads to a single peak signal and permits elimination of nitrate decomposition products before atomization. Interference effects are more important in the presence of 0.1 M sulphate salts and increase with the acidity of the medium. Na2SO4, which is reduced to Na2S on the graphite, does not interfere significantly. However, the decomposition products of MgSO4 and CaSO4 induce an important interference effect on the determination of Pb which is stabilized in the furnace. In the case of Na2SO4, the use of the Pd/Mg modifier delays the atomization signal which coincides with the background absorption signal, leading to an important interference effect which cannot be eliminated by charring. In the presence of MgSO4 and CaSO4, the stabilizing effect of Pd permits the elimination of decomposition products of sulphate salts before atomization and suppresses the chemical interference effect.  相似文献   

5.
The influence of four different salts (NaCl, KBr, CaCl2 and MgCl2) on the associative behaviour of poly(ethylene oxide) (POE with M=32000g/mol) hydrophobically end-capped with hexadecyl groups in aqueous solutions was investigated. Phase diagrams were obtained, structural properties were established by small angle neutron scattering (SANS) measurements and studies on the viscoelastic properties of the solutions were performed by low-shear viscosity and dynamic stress experiments. The influence of the four salts is compared as well as the difference of the interactions obtained with and without salts.  相似文献   

6.
The Fourier transform infrared-attenuated total reflectance (FTIR-ATR) difference spectra of aqueous MgSO4, Na2SO4, NaCl and MgCl2 solutions against pure water were obtained at various concentrations. The difference spectra of the solutions showed distinct positive bands and negative bands in the O–H stretching region, indicating the influences of salts on structures of hydrogen-bonds between water molecules. Furthermore the difference spectra of MgCl2 solutions against NaCl solutions and those of MgSO4 solutions against Na2SO4 solutions with the same concentrations of anions (Cl? or SO 4 2? , respectively) allowed extracting the structural difference of the first hydration layer between Mg2+ and Na+. Using SO 4 2? as a reference ion, structural information of the first hydration layer of the Cl? anion was obtained according to the difference spectra of MgCl2 solutions against MgSO4 solutions and those of NaCl solutions against Na2SO4 solutions containing the same concentrations of cations (Mg2+ or Na+, respectively). The positive peak at ~3,407 cm?1 and negative peak at ~3,168 cm?1 in these spectra indicated that adding Cl? decreased the strongest hydrogen-bond component and increased the relatively weaker one.  相似文献   

7.
Suitability of reverse micelles of anionic surfactant sodium bis(2-ethyl hexyl) sulfosuccinate (AOT) and sodium dodecyl sulfate (SDS), cationic surfactant hexadecyl trimethyl ammonium bromide (CTAB) and nonionic surfactant polyoxyethylene p-t-octylphenol (TritonX-100) in organic solvent isooctane for extraction of soy isoflavone-enriching proteins was investigated. The results showed that the order of combined isoflavone contents was SDS>CTAB>Triton X-100>AOT, while the order of protein recovery was SDS>AOT>TritonX-100>CTAB. As compared with ACN-HCl extraction, the total amount of isoflavones was lower than reverse micellar extraction. Ion strength was one of the important conditions to control extraction of isoflavone-enriching proteins with AOT reversed micelles. For the six salt systems, KNO3, KCl, MgCl2, CaCl2, NaCl, and Na2SO4, extracted fraction of isoflavone-enriching proteins was measured. Salt solutions greatly influenced the extraction efficiency of isoflavones in an order of KNO3>MgCl2>CaCl2>KCl>NaCl>Na2SO4, while protein in an order of MgCl2>CaCl2>NaCl>KNO3>Na2SO4>KCl.  相似文献   

8.
Phase equilibria of the quaternary NaCl–NaBr–Na2SO4–H2O system at 323 K were studied by the isothermal dissolution equilibrium method. The solubilities of salts and densities of saturated solutions were determined. Solid solutions [Na(Cl, Br)] were found in the experiments. The phase diagram of the quaternary system has no invariant point, but has one univariant curve at the boundary of Na(Cl, Br) and Na2SO4 crystallization fields. The experimental results show that an increase of the NaBr concentration is accompanied by an obvious increase of the solution density and the decrease of the solubilities of NaCl and Na2SO4.  相似文献   

9.
With an increase in the concentration of additives, the hydration numbers of compounds decrease. Thus, in a saturated 54.6% solution, urea loses approximately 3/4 of the initial amount of water, forming an aquacomplex of the composition (NH2)2CO?H2O. In a supersaturated 44% solution, the sodium chloride aquacomplex is dehydrated by 2/3, and in a supersaturated 67% solution, sodium sulfate is dehydrated by 5/6. The density of these solutions is 1.354÷1.360 g/cm3 (44% NaCl) and 1.800÷1.849 g/cm3 (67% Na2SO4). In a saturated urea solution, NaNO3, NaCl, and Na2SO4 complexes lose 53÷55% of hydration water. It is shown that the interactions in the binary water–urea system somewhat increase the hydration number of the salts (structural hydration). The hydration water density, a structurally important characteristic, increases in the series of solutions of urea, NaNO3, NaCl, and Na2SO4. In the same series of additives, the excess volume of binary water–urea and water–salt systems becomes more negative.  相似文献   

10.
 The effects of polycation structure, counterions and the nature of the solvent on the interaction between low-molecular-weight salts with some cationic polyelectrolytes in water and methanol were investigated. The polyelectrolytes used in this study were cationic polymers with quaternary nitrogen atoms in the backbone with or without a nonpolar side chain (polymer type PCA5H1, PCA5D1 and PCA5) or tertiary amine nitrogen atoms in the main chain (polymer type PEGA). LiCl, NaCl, KCl, NaBr, NaI and Na2SO4 were used as low-molecular-weight salts. The interaction between polycations and salts was followed by viscometric and conductometric measurements. The study of the interaction of monovalent counterions with cationic polyelectrolytes emphasized an increase in the interaction with the decrease in the radius of the hydrated counterion, both for strong polycations and for weak polycations, suggesting that counterion binding is nonspecific. In the case of SO2− 4 anions, the Λmc 1/2 curve passes through a minimum at c p values between 1 × 10−3 and 3 × 10−3 unit mol/l; this phenomenon can be explained by the maximum counterion interaction owing to the capacity of the polyvalent counterion to bind two charged groups by intra- or interchain bridges. The investigation of the influence of the polycation structure on the counterion binding indicated an increase in charged group–counterion interactions with a decrease in the nonpolar chain length and an increase in the quaternary ammonium salt group content (charge density) in the chain. The polyelectrolyte with tertiary amine groups in the chain, PEGA, showed, on one hand, a cation adsorption order as K+>Na+>Li+ and, on the other hand, a stronger association between ions and PEGA chains in methanol than in water owing to the poorer solvating effect of methanol on the cations. Received: 20 February 2001 Accepted: 29 June 2001  相似文献   

11.
A series of superabsorbent composites were synthesized by copolymerization reaction of partially neutralized acrylic acid on unexpanded vermiculite (UVMT) micropowder using N,N′-methylenebisacrylamide (MBA) as a crosslinker and ammonium persulfate (APS) as an initiator in aqueous solution. And the samples were further characterized by means of fourier-transform spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The effects of vermiculite content on water absorbency were studied. Swelling behaviors of the superabsorbent composites in various cationic salt solutions (NaCl, CaCl2 and FeCl3), anionic salt solutions (NaCl, Na2SO4 and Na3PO4) and pH solutions were also systematically investigated. Results obtained showed that the equilibrium water absorbency increased with increasing UVMT content and the concentration of 20 wt.% clay gave the best absorption (1232 g/g in distilled water and 89 g/g in 0.9 wt.% NaCl). Data achieved also suggested that the water absorbency in various saline solutions decreased with an increase in the ionic strengths of these solutions. And it was found that at a higher ionic strength (>1 × 10−3 M), the water absorbency in monovalent cationic solutions was higher than those in multivalent cationic solutions. However, at the same ionic strength (>1 × 10−3 M), the effect of three anionic salt solutions on the swelling has the following order: NaCl < Na2SO4 < Na3PO4.  相似文献   

12.
Abstract

The influence of various inorganic salts (NaCl, KCl, CsCl, KNO3, Na2SO4, K2SO4, MgCl2, CaCl2) on the kinetics of the reactions of acetylcholinesterase with neutral and cationic 0,O-diethylthiophosphates, (C2H50)2 P(0)SX, where × = (CH2)n and (CH2)n S+ (CH3) C2H5 (n=1–6), has been studied at 25° C and pH 7.5. The salt effect in the second-order rate constant can be quantitatively described by the equation log(k2/Ks) = log(k2 /KS)°-ψlog[M] + bc where bc is the term for the kinetic salting effect, ψlog[M] is the electrostatic term, c and [MI are the molar concentrations of salt and salt cation. The salting effect is observed in the binding step (Ks) as well as in the enzyme phosphorylation step (k2). Parallel increase of b with increasing n has been observed for the series of both ionic and neutral inhibitors. Electrostatic effect is observed only in the binding step for cationic inhibitors and does not depend on the distance between the onium atom and the reaction center in the inhibitor molecule. The observation of uniform Y is in accordance with the Manning's polyelectrolyte theory, suggesting that acetylcholinesterase can be considered as negatively charged polyelectrolyte. According to the theory the release of condensed counterions from the polyelectrolyte provides electrostatic contribution to the binding of cationic ligands, and the presence of localized anionic site on the acetylcholinesterase molecule is not required to account for the observed electrostatic effect. The obtained mean value of ψ = 0.49 ± 0.08 can be used as a quantitative parameter to characterize the effective charge density of acetylcholinesterase.  相似文献   

13.
The optical absorption spectra observed by pulse radiolysis of alkaline (NaOH, KOH, RbOH), chloride (LiCl, MgCl2, CaCl2, NaCl, KCl) and perchloride (NaClO4) solutions at temperature 298 K are reported. Some measurements were performed at low temperature with aqueous ionic glasses. With increasing concentration of the above solutes a uniform blue-shift of the maximum of the solvated electron (e¯sol) absorption band is observed. Near infrared (NIR) spectroscopy was so used to examine the properties of water in several concentrated electrolyte solutions. It is shown that some inorganic electrolytes (e.g. NaOH, NaClO4) substantially change the water structure whereas some others (e.g. LiCl, CaCl2) influence water structure insignificantly. The correlation between the ability of excess electron trapping in electrolyte solutions and water structure deduced from NIR spectroscopy is discussed.  相似文献   

14.
The effects of inorganic mono- and divalent salts of different types on how the cation polyelectrolyte polyallylamine hydrochloride (PAA) binds with the oligomer enzyme urease were studied. It was shown that in solutions of the monovalent salts NaCl, KCl, and NH4Cl, polyelectrolyte-protein complexes formed by electrostatic interactions, which decreased monotonically as the salt concentrations increased according to the classic law of statistical physics, correlating the Debye radius with the ionic strength of the solution. In solutions of the divalent salts Na2SO4 and (NH4)2SO4, the efficiency of the formation of the polyelectrolyte-protein complexes changed abruptly (the enzyme was drastically activated) at low salt concentrations (∼0.6–0.8 mM), which was not consistent with the classic theory of charge interactions in solutions with different ionic strengths. Turbidimetric titration at different salt concentrations in the given range revealed a high aggregative ability for sulfates and low ability for chlorides. It was concluded that the anomalies in the concentration dependence of the enzyme activity and aggregative ability were related to the formation of stable bonds PAA to the divalent SO42− anion, which increased drastically when the ratio of anion concentration to the number of positively charged PAA monomers in solution reached 1: 2.  相似文献   

15.
The chromatography of some amino compounds was performed on high-performance thin-layer plates (silica-gel 60 F254, catalog no. 1.05554, Merck, Germany) using aqueous and alcoholic (MeOH) and aqueous–organic solutions of cationic, anionic, and nonionic surfactants. The results obtained with 0.01 M aqueous sodium dodecyl sulfate (SDS) have been compared with distilled water (i.e., zero SDS) as the eluent. The effects of the surfactant concentration, the nature of the alcohol, and the presence of inorganic salts (NaCl, LiCl, CaCl2, and CoCl2) in the mobile phase were examined in order to understand the mobility pattern of amino compounds. Among the added salts, CaCl2 was found to be the most effective for facilitating an analytically important separation of coexisting ortho-, meta-, and para-aminophenols. The TLC system consisting of a precoated high-performance silica layer as the stationary phase and 0.01 M methanolic SDS plus 0.1 M CaCl2 in a 3 : 7 ratio as the mobile phase was identified as the most suitable system for the separation of o-, m-, and p-APHS from their mixtures. The influence of various impurities, such as amines, phenols, and inorganic cations, on the mobility and the separation of coexisting aminophenol isomers has also been examined. The lower limits of detection of aminophenols were determined on HPTLC plates using I2 vapors as the detection reagent.  相似文献   

16.
The effect of low-salinity (1000 to 5000?ppm) and intermediate-salinity (5000 to 40000?ppm) water (MgSO4, MgCl2, Na2SO4, CaCl2, NaCl and KCl) on asphaltene precipitation was investigated in this work. The results revealed that all brines intensify the amount of asphaltene precipitation. All cases exhibited initial downward trend followed by the upward trend for the amount of asphaltene precipitation with increasing the brine concentration. A similar trend was also observed for Interfacial Tension (IFT) between crude oil and brine in this study. IFT was tested for MgSO4, MgCl2, Na2SO4, CaCl2, NaCl and KCl brines with concentrations of 1000 to 40000?ppm. Finally, experimental results showed that an increase in volume of all brines in the mixture (brine +oil) led to increase and decrease of the asphaltene precipitation in low and intermediate salinity regions, respectively.  相似文献   

17.
A streaming potential analyzer has been used to investigate the effect of solution chemistry on the surface charge of four commercial reverse osmosis and nanofiltration membranes. Zeta potentials of these membranes were analyzed for aqueous solutions of various chemical compositions over a pH range of 2 to 9. In the presence of an indifferent electrolyte (NaCl), the isoelectric points of these membranes range from 3.0 to 5.2. The curves of zeta potential versus solution pH for all membranes display a shape characteristic of amphoteric surfaces with acidic and basic functional groups. Results with salts containing divalent ions (CaCl2, Na2SO4, and MgSO4) indicate that divalent cations more readily adsorb to the membrane surface than divalent anions, especially in the higher pH range. Three sources of humic acid, Suwannee River humic acid, peat humic acid, and Aldrich humic acid, were used to investigate the effect of dissolved natural organic matter on membrane surface charge. Other solution chemistries involved in this investigation include an anionic surfactant (sodium dodecyl sulfate) and a cationic surfactant (dodecyltrimethylammonium bromide). Results show that humic substances and surfactants readily adsorb to the membrane surface and markedly influence the membrane surface charge.  相似文献   

18.
Six samples of poly(2-deoxy-2-methacryloylamino-D-glucose) were prepared by free-radical polymerization of the monomer. The molecular properties of the homologous series obtained were studied in three solvents, 0.2 M NaCl, 0.1 M Na2SO4, and salt-free water, by viscometry and static and dynamic light scattering. The Mark-Kuhn-Houwink relationships were obtained. The poly(vinyl saccharide) studied, despite the presence of bulky pendant substituents, is a typical flexible-chain polymer with the Kuhn segment length of 20 ± 3 Å. In aqueous salt systems, poly(2-deoxy-2-methacryloylamino-D-glucose), which is not a polyelectrolyte, nevertheless demonstrates the dependence of the hydrodynamic size of the molecules on the solvent composition. The SO 4 2? ions make the polymer molecules more compact, whereas Cl? ions present in aqueous solution lead to its expanding. Salt additions affect the thermodynamic quality of the polymer-solvent system.  相似文献   

19.
Viscometry and dynamic and static light scattering are employed to study the molecular properties of water-soluble poly(carboxybetaine), that is, poly(2-(diallyl(methyl)ammonium) acetate). It is shown that, in solutions with pH 1, the polymer behaves as a polyelectrolyte. In media with pH 6 and 13, an increase in the concentration of sodium chloride increases the intrinsic viscosity of the polymer and the hydrodynamic radius of its macromolecules, thereby indicating the antipolyelectrolyte effect typical of polymer zwitterions. In water and 0.1 M NaOH, the second virial coefficient of the polymer is close to zero, while exponent ν, which relates the sizes of macromolecules to their molecular masses, is 0.5. In 1 M NaCl, the second virial coefficient becomes positive, while exponent increases to 0.58. The Kuhn segment lengths of poly(carboxybetaine) molecules are 6.3 and 6.6 nm in water and 1 M NaCl, respectively. An increase in the hydrodynamic radius of macromolecules with the ionic strength of the solution is due to the shielding of attraction between zwitterions belonging to polybetaine monomer units located far apart along a macromolecular chain.  相似文献   

20.
The swelling behavior of polyelectrolyte gels based on poly(diallyldimethylammonium chloride) (copolymers of diallyldimethylammonium chloride and acrylamide with the variable composition) and poly(methacrylic acid, sodium salt) in the presence of organic water soluble dyes (alizarin, naphthol blue black, rhodamine) was studied. The collapse of the polyelectrolyte gels in the presence of oppositely charged dyes together with the effective absorption of dyes was observed. The shrinking degree and the dye absorption by the gel depend on the charges of the polymer network and the dye, and also on the dye concentration. Stability of the gel–dye complexes in a salt solution of NaCl and Al2(SO4)3 was studied. It was shown that the complex stability in the salt solution depends on the charge density of the polymer chains forming the gel. The increase of charge density of polymer generally leads to the enhancement of the complex stability. For the systems with the fraction of charged poly(diallyldimethylammonium chloride) monomer units above 0.5 the release of alizarin to the external solution of Al2(SO4)3 reservoir is practically completely suppressed. The obtained results show that oppositely charged dyes are generally from stable complexes with polyelectrolyte gels. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1209–1217, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号