首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The radical copolymerization of limonene with styrene by azobisisobutyronitrile in xylene at 80 ± 0.1 °C for 2 h, under inert atmosphere of N2, yields alternating copolymers. The kinetic expression is Rp∝[I]0.5[Sty]1.0[Lim]−1.0. The overall activation energy is calculated as 41 kJ/mol. The FTIR and 1H-NMR spectra of copolymers show bands at 3000 and 1715 cm−1 and peaks at 6.8 δ and 5.3 δ due to phenyl protons of styrene and trisubstituted olefinic protons of limonene, respectively. The values of reactivity ratios r1(Sty)=0.0625 and r2(Lim)=0.014, calculated by Kelen-Tüdos method. The Alfrey-Price Q-e parameters for limonene are 0.438 and −0.748, respectively. The penultimate unit effect is favoured in the present system and the value of φ is 38.49.  相似文献   

2.
TheJ-dependence of the isotope shift in the terma 11 F of 4f 7 5d 2 6s between six stable Gd isotopes was found to be represented by these parameter values (in MHz):z 5d (160?158)=19.4(1.8),z 5d (160?157)=37.2(1.0),z 5d (160?156)=42.4(1.7),z 5d (160?155)=49.1(2.0),z 5d (160?154)=59.0(2.0). The normalization with the corresponding changes in the mean-square nuclear charge-radiiδr 2〉 yields values which are almost constant, mean value:z 5d /δr 2〉=134(14) MHZ/fm2. This indicates a second order IS interaction of the magnetic and the field shift operator.  相似文献   

3.
The zero-point average structures of acetyl chloride and acetyl bromide have been determined by the combined use of their moments of inertia and average distances, obtained by means of microwave spectroscopy and electron diffraction. The rz parameters determined are as follows: rz(CO) = 1.185 ± 0.003 Å, rz(C-Cl) = 1.796 ± 0.002 Å, rz(C-C) = 1.505 ± 0.003 Å, rz(C-H) = 1.092 ± 0.005 Å, φz(OCCl) = 121.2 ± 0.6°, φz(CCCl) = 111.6 ± 0.6°, φz(HCH) = 108.8 ± 0.8° and tilt(CH3) = 1.3 ± 1.0°, for chloride; rz(CO) = 1.181 ± 0.003 Å, rz(C-Br) = 1.974 ± 0.003 Å, rz(C-C) = 1.516 ± 0.003 Å, φz(OCBr) = 122.3 ± 1.5°, φz(CCBr) = 111.0 ± 1.5°, φz(HCH) = 109.9 ± 1.1°, tilt(CH3) = 1.9 ± 1.0°, for bromide. The barriers V3 to internal rotation have been revised to 1260 and 1256 cal mol−1 for the chloride and bromide, respectively.  相似文献   

4.
Curcumin (Cur), a natural colorant found in the roots of the Turmeric plant, has been reported for the first time as photoinitiator for the copolymerization of styrene (Sty) and methylmethacrylate (MMA). The kinetic data, inhibiting effect of benzoquinone and ESR studies indicate that the polymerization proceeds via a free radical mechanism. The system follows ideal kinetics (Rp α[Cur]0.5[Sty]0.97[MMA]1). The reactivity ratios calculated by using the Finemann–Ross and Kelen‐Tudos models were r1(MMA)=0.46 and r2(Sty)=0.52. IR and NMR analysis confirmed the structure of the copolymer. NMR spectrum showing methoxy protons as three distinct groups of resonance between 2.2–3.75 δ and phenyl protons of styrene at 6.8–7.1 δ confirmed the random nature of the copolymer. The mechanism for formation of radicals and random copolymer of styrene and MMA [Sty‐co‐MMA] is also discussed.  相似文献   

5.
The molecular structure and conformation of carvone, a compound with a minty odor, were investigated by means of gas electron diffraction supported by theoretical calculations. Electron diffraction patterns were recorded by heating the nozzle up to 128 °C to obtain enough scattering intensity. The infrared spectrum was also measured by using an absorption cell with a path length of 10 m. The obtained molecular scattering intensities were analyzed with the aid of theoretical calculations and infrared spectroscopy. It was revealed that the experimental data are well reproduced by assuming that carvone consists of a mixture of three conformers that have the isopropenyl group in the equatorial position and mutually differ in the torsional angle around the single bond connecting the ring and the isopropenyl group. It was also found that the puckering amplitude of the ring of carvone is close to those of menthol and isomenthol, a minty compound and its nonminty isomer. The determined structural parameters (rg and ∠α) of the most abundant conformer of carvone are as follows: 〈r(C-C)〉=1.520(3) Å; 〈r(CC)〉=1.360(5) Å; r(CO)=1.225(5) Å; 〈r(C-H)〉=1.104(4)Å; 〈∠CC-C〉=121.1(5)°; 〈∠C-C-C〉=110.4(5)°; ∠C-CO-C=117.1(14)°; 〈∠C-C-H〉=111.1(13)°. Angle brackets denote average values and parenthesized values are the estimated limits of error (3σ) referring to the last significant digit.  相似文献   

6.
The radical copolymerization of limonene (optically active) with methyl methacrylate in xylene at 80±0.1°C for 1 hr, initiated by benzoyl peroxide (BPO) yield alternating copolymer(s), under the inert atmosphere of nitrogen, as evidenced by reactivity ratios r1 (MMA)=0.07 and r2 (limonene)=0.012 using the Kelen–Tüdos method. The kinetic expression is Rα[I]0.5[MMA]1.0[Lim.]?1.0. The decrease in the rate of polymerization with increase in concentration of limonene is due to penultimate unit effect. The overall energy of activation is calculated as 49 kJ/mole. FTIR of the copolymer(s) shows the characteristic frequencies at 1732.40 and 2951.40 cm?1 due to –OCH3 of MMA and aromatic C–H stretching of limonene, respectively. 1H NMR spectra shows peak at 3.8–4.1 δ and 5.3–5.6 δ due to –OCH3 of MMA and trisubstituted olefinic protons [–CH=CH–CH2–] of limonene, respectively.  相似文献   

7.
The thermal stabilities of poly(acryloyl chloride) homopolymer and copolymers of acryloyl chloride with methyl methacrylate covering the entire composition range were studied by thermogravimetric analysis. At each extreme of the composition range incorporation of comonomer units results in a copolymer which is less stable than the PMMA homopolymer. The activation energies of the decomposition of the copolymers were calculated using the Arrhenius equation and found to decrease from 32.2 to 12.5 kJ mol?1 as acryloyl chloride concentration of the copolymer increases, indicating that the copolymers of higher acryloyl chloride concentration should easier decompose than other copolymers. The reactivity ratios of the copolymer were calculated and found to ber 1(AC)=0.2±0.02 andr 2(MMA)=0.9±0.1.  相似文献   

8.
The gas-phase chemistry of AgFe+ was studied by using Fourier transform ion cyclotron resonance mass spectrometry. AgFe+ is unreactive with alkanes but reacts with cyclic and linear (C4–C8) alkenes. The primary reactions are dominated by dehydrogenation and condensation. In addition, cluster splitting is observed in the reaction of AgFe+ with benzene. Secondary reactions generally involve cluster splitting with the loss of Ag, although AgFeC5H 6 + is observed to dehydrogenate cyclopentene to yield AgFeC10H 12 + . Ion-molecule reactions, collision-induced dissociation, and photodissociation experiments were used to determine the bond energiesD°(Fe+–Ag)=53±7 kcal/mol andD°(Ag+–Fe)=46±7 kcal/mol. These values in turn were used to calculateH f (AgFe+)=296±7 kcal/mol andIP(AgFe)=6.5±0.3 eV. Related chemical and physical properties of CuFe+ are presented for comparison.  相似文献   

9.
A new coordination polymer formulated as [C8H10CdO7]n·4H2O has been prepared via a hydrothermal procedure by using 1,4-benzenedicarboxylic (p-BDC) and CdII salt as starting materials. The structure was determined by single-crystal X-ray diffraction and the result shows that the complex crystallizes in orthorhombic system, space group Pcca, with Mr=402.62, a=7.293(2) Å, b=9.980(3) Å, c=19.889(6) Å, V=1447.6(8) Å3, Z=4, Dc=1.847 g/cm3, F(000)=808, μ(MoKα)=1.559 mm−1, R=0.0478, wR=0.1150, GOF=1.199. It displays a neutral layered framework along ab plane constructed by hydrogen-bonding interaction through infinite zigzag chains. Its thermal decomposition and solid-state transformation course between 30 and 550 °C was recorded by TG curve and XRD pattern, respectively. Interestingly, it is found that at higher temperature the crystal material was converted to uniform CdO nanowires, suggesting an effective and reasonable complex-precursor procedure for preparing one-dimensional crystalline nanomaterials.  相似文献   

10.
The molecular structure of propargylgermane, HCCCH2GeH3, has been determined by gas-phase electron diffraction. The electron-diffraction investigation has been supported by density functional theory and ab initio calculations. The ra value of the bond lengths (pm) are: r(C–Ge)=197.2(1); r(C–C)=143.9(2); r(CC)=123.1(1); r(H–Cacetylene)=108.5(3); r(C–H)=111.6(3) and r(Ge–Haverage)=153.7(2). The Ge–C–C angle is 111.7(1)° and the C–CC angle is 178.3(4)°. The uncertainties are one standard deviation from the least-squares refinement.  相似文献   

11.
The novel methacrylic monomer, 4-nitro-3-methylphenyl methacrylate (NMPM) was synthesized by reacting 4-nitro-3-methylphenol dissolved in ethyl methyl ketone (EMK) with methacryloyl chloride in the presence of triethylamine as a catalyst. The homopolymer and copolymers of NMPM with glycidyl methacrylate having different compositions were synthesized by free radical polymerization in EMK solution at 70 ± 1 °C using benzoyl peroxide as free radical initiator. The homopolymer and the copolymers were characterized by FT-IR, 1H NMR and 13C NMR spectroscopic techniques. The solubility tests were tested in various polar and non-polar solvents. The molecular weight and polydispersity indices of the copolymers were determined using gel permeation chromatography. The glass transition temperature of the copolymers increases with increase in NMPM content. The thermogravimetric analysis of the polymers performed in air showed that the thermal stability of the copolymer increases with NMPM content. The copolymer composition was determined using 1H NMR spectra. The monomer reactivity ratios were determined by the application of conventional linearization methods such Fineman-Ross (r1 = 1.862, r2 = 0.881), Kelen-Tudos (r1 = 1.712, r2 = 0.893) and extended Kelen-Tudos methods (r1 = 1.889, r2 = 0.884).  相似文献   

12.
The phase relations in the pseudo-binary system SrO-Fe2O3 have been investigated in air up to 1150°C by means of powder X-ray diffraction and thermal analysis. Sr3Fe2O7−δ, SrFeO3−δ and SrFe12O19 are stable phases in the entire investigated temperature region, whereas Sr2FeO4−δ and Sr4Fe3O10−δ decompose above 930±10°C and 850±25°C, respectively. Sr4Fe6O13±δ is entropy-stabilized relative to SrFeO3−δ and SrFe12O19 above 775±25°C. Extended solid-solution SrxFeO3−δ was demonstrated. On the Fe-deficient side, the extent of solid solubility appeared to decrease gradually with temperature, whereas an abrupt decrease due to formation of Sr4Fe6O13±δ was observed above 775°C on the Sr-deficient side.  相似文献   

13.
The hydrothermal syntheses, single crystal structures, and some properties of Ba2MnIIMn2III(SeO3)6 and PbFe2(SeO3)4 are reported. These related phases contain three-dimensional frameworks of vertex (FeO6) and vertex/edge linked (MnO6) octahedra and SeO3 pyramids. In each case, the MO6/SeO3 framework encloses two types of 8 ring channels, one of which encapsulates the extra-framework cations and one of which provides space for the SeIV lone pairs. Crystal data: Ba2Mn3(SeO3)6, Mr=1201.22, monoclinic, P21/c (No. 14), a=5.4717 (3) Å, b=9.0636 (4) Å, c=17.6586 (9) Å, β=94.519 (1)°, V=873.03 (8) Å3, Z=2, R(F)=0.031, wR(F2)=0.070; PbFe2(SeO3)4, Mr=826.73, triclinic, (No. 2), a=5.2318 (5) Å, b=6.7925 (6) Å, c=7.6445 (7) Å, α=94.300 (2)°, β=90.613 (2)°, γ=95.224 (2)°, V=269.73 (4) Å3, Z=1, R(F)=0.051, wR(F2)=0.131.  相似文献   

14.
The structures of tetrachloro-p-benzoquinone and tetrachloro-o-benzoquinone (p- and o-chloranil) have been investigated by gas electron diffraction. The ring distances are slightly larger and the carbonyl bonds slightly smaller than in the corresponding unsubstituted quinones. The molecules are planar to within experimental error, but small deviations from planarity such as those found for the para compound in the crystal are completely compatible with the data. Values for the geometrical parameters (ra distances and bond angles) and for some of the more important amplitudes (l) with parenthesized uncertainties of 2σ including estimated systematic error and correlation effects are as follows. Tetrachloro-p-benzoquinone: D2h symmetry (assumed); r(CO) = 1.216 Å(4), r(CC) = 1.353 Å(6), r(C-C) = 1.492 Å(3), r(C-Cl) = 1.701 Å(3), ∠C-C-C = 117.1° (7), ∠CC-C1 = 122.7° (2), l(CO)= 0.037 Å(5), l(CC) = l(C-C) - 0.008 Å(assumed) = 0.049 Å(7), and l(C-Cl) = 0.054 Å(3). Tetrachloro-o-benzoquinone: C2v symmetry (assumed); r(CO) = 1.205 Å(5), r(CC) = 1.354 Å(9), r(Ccl-Ccl) = 1.478 Å(28), r(Co-Ccl) = 1.483 Å(24), r(Co-Co) = 1.526 Å(2), r(C-Cl)= 1.705 Å(3), <Co-CO = 121.0° (22), ∠C-C-C = 117.2° (9), ∠Cco, ClC-Cl = 118.9° (22), ∠Cccl, ClC-Cl = 122.2°(12), l(CO) = 0.039 Å(5), and l(Ccl-Ccl) = l(Co-Ccl) = l( Co-Co) = l(CC) + 0.060 Å(equalities assumed) = 0.055 Å(9). Vibrational'shortenings (shrinkages) of a few of the long non-bond distances have also been measured.  相似文献   

15.
The structures of isobutene and 2,3-dimethyl-2-butene have been studied by gas electron diffraction. For isobutene the rotational constants obtained by Laurie by microwave spectroscopy have also been taken into account. Leastsquares analyses have given the following rg bond distances and valence angles (rav for isobutene and rα for dimethylbutene): for isobutene, r(CC) = 1.342±0.003 Å, r(C-C)= 1.508±0.002Å, r(C-H, methyl) = 1.119±0.007 Å, r(C-H, methylene) = 1.095±0.020 Å, ∠(C-CC) = 122.2±0.2°, ∠(H-C-H) = 107.9±0.8°, and ∠(C-C-H) 121.3±1.5°; for dimethylbutene, r(CC)= 1.353 ±0.004 Å, r(C-C) = 1.511±0.002 Å, r(C-H) = 1.118± 0.004 Å, ∠(C-CC)= 123.9±0.5°, and ∠(H-C-H)= 107.0±1.0°, where the uncertainties represent estimated limits of experimental error. The bond distances and valence angles in these molecules and in related molecules are compared with one another. The CC and C-C bond distances increase almost regularly with the number of methyl groups, and the C-C bonds in isobutene and dimethylbutene are shorter than those in acetaldehyde and acetone by about 0.01 Å. Systematic variations in the C-CC angles suggest the steric influence of methyl groups.  相似文献   

16.
The molecular structure and benzene ring distortions of ethynylbenzene have been investigated by gas-phase electron diffraction and ab initio MO calculations at the HF/6-31G* and 6-3G** levels. Least-squares refinement of a model withC 2v, symmetry, with constraints from the MO calculations, yielded the following important bond distances and angles:r g(C i -C o )=1.407±0.003 Å,r g(C o -C m )=1.397±0.003 Å,r g(C m -C p )=1.400±0.003 Å,r g(Cr i -CCH)=1.436 ±0.004 Å,r g(C=C)=1.205±0.005 Å, C o -C i -C o =119.8±0.4°. The deformation of the benzene ring of ethynylbenzene given by the MO calculations, including o-Ci-Co=119.4°, is insensitive to the basis set used and agrees with that obtained by low-temperature X-ray crystallography for the phenylethynyl fragment, C6H5-CC-, in two different crystal environments. The partial substitution structure of ethynylbenzene from microwave spectroscopy is shown to be inaccurate in the ipso region of the benzene ring.  相似文献   

17.
Copolymerization of an excess of methyl methacrylate (MMA) relative to 2-hydroxyethyl methacrylate (HEMA) was carried out in toluene at 80 °C according to both conventional and controlled Ni-mediated radical polymerizations. Reactivity ratios were derived from the copolymerization kinetics using the Jaacks method for MMA and integrated conversion equation for HEMA (rMMA = 0.62 ± 0.04; rHEMA = 2.03 ± 0.74). Poly(ethylene glycol) α-methyl ether, ω-methacrylate (PEGMA, Mn = 475 g mol−1) was substituted for HEMA in the copolymerization experiments and reactivity ratios were also determined (rMMA = 0.75 ± 0.07; rPEGMA ∼ 1.33). Both the functionalized comonomers were consumed more rapidly than MMA indicating the preferred formation of heterogeneous bottle-brush copolymer structures with bristles constituted by the hydrophilic (macro)monomers. Reactivity ratios for nickel-mediated living radical polymerization were comparable with those obtained by conventional free radical copolymerization. Interactions between functional monomers and the catalyst (NiBr2(PPh3)2) were observed by 1H NMR spectroscopy.  相似文献   

18.
The Re(I) complexes bearing 2,6-bis(7-azaindolyl)phenyl ligand as a tridentate ligand were synthesized by treatment with Re2(CO)10. The structures of the complexes were confirmed by X-ray crystallography. Both 7-azaindolyl ligands of Re(I) complexes are present in butterfly forms. The Re-Cipso bonds showed a partial double bond character by π back-donation between the phenyl moiety and Re atom. In THF solution at room temperature, these complexes exhibited green emission (λem=510 nm), which is considered to be attributable to MLCT (dz2(Re) →π* (7-azaindolyl group)) transition containing π→π* (7-azaindolyl group) transition.  相似文献   

19.
The radical copolymerization of perfluoromethylvinyl ether (PMVE) and perfluoropropylvinyl ether (PPVE) with vinylidene fluoride (VDF), initiated by tertiobutyl peroxypivalate (TBPPI) and ditertiobutyl peroxide (DTBP), respectively, are presented. The kinetics of copolymerization were investigated for each monomer from series of at least eight reactions for which the initial [VDF]0/[fluorinated vinyl ether]0 molar ratios ranged between 20/80 and 80/20. The copolymer compositions of these random-type copolymers were calculated by means of 19F NMR spectroscopy and allowed one to quantify the respective amounts of each monomeric unit in the copolymer. According to the Tidwell and Mortimer method, the reactivity ratios (ri) of both comonomers for each type of copolymerization were obtained : rVDF = 3.40 ± 0.40 and rPMVE = 0 at 74 °C; and rVDF = 1.15 ± 0.36 and rPPVE = 0 at 120 °C. Moreover, the glass transition temperatures (Tg’s) of poly(VDF-co-PMVE) and poly(VDF-co-PPVE) copolymers containing different amounts of VDF and PMVE or PPVE, were determined and the theoretical glass transition temperatures of poly(PMVE) and poly(PPVE) homopolymer were deduced.  相似文献   

20.
The title compound, 6-nitro-[1,10]phenanthroline-1-ium nitrate, has been synthesized and characterized by elemental analysis, electron absorption spectroscopy, IR, 1H and 13C NMR spectroscopy. The X-ray crystal structure study showed that the compound crystallizes in the monoclinic system, space group Cc, with Mr=288.22 (C12H8N4O5), a=13.861(3), b=10.142(2), c=8.7320(17) Å, β=103.70(3)°, V=1192.6(4) Å3, Z=4, Dc=1.605 g/cm3, F(000)=592, μ(Mo Kα)=0.129 mm−1, R=0.0439, wR=0.1125, GOF=1.110. In the crystal lattice, the molecules create a network structure through hydrogen bonds. Ab initio calculations of the structures, charges distribution, natural bond orbitals, topological analysis and thermodynamic functions of 5-nitro-[1,10]phenanthroline and its protonated cation were performed at HF/6-311G** and B3LYP/6-311G** levels of theory. The calculation results are in a good agreement with the X-ray data and show that the protonated structure is stable. The calculation of second order optical nonlinearity was carried out and a higher molecular hyperpolarizability of 24.66×10−30 esu was predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号