首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of hygrothermally-degraded polyester urethane (HD-PUR) waste on chloroprene rubber (CR) has been studied giving special attention to curing behaviour, mechanical properties and dynamic mechanical behaviour. The presence of primary and secondary amines in HD-PUR, did not increase the cure rate of CR. The mechanical properties of chloroprene vulcanizates were improved upon HD-PUR addition. The strain-induced crystallisation of CR did not show any deviation upon the addition of HD-PUR. Crosslink densities calculated from swelling studies, stress-strain behaviour, and modulus measurements are found to increase upon HD-PUR addition and showed similar trend. The glass transition temperature (Tg) did not show any significant change, with the addition of HD-PUR. Scanning electron microscopic studies have been done in order to have an insight into fracture behaviour of the samples and to analyse the microstructure of the blends.  相似文献   

2.
This study deals with the effect of coupled thermal and cyclic mechanical loadings on the viscoelastic response of carbon black filled nitrile rubber. For this purpose, cyclic loading tests were performed at different temperatures by means of Dynamic Mechanical and Thermal Analysis (DMTA). The type and level of the thermomechanical loadings applied were chosen in order to determine the relative contribution of each of the mechanical and thermal loadings (and their coupling) to the viscoelastic response during the cyclic tests. X-ray Photoelectron Spectroscopy (XPS) and Fourier Transformed Infrared spectroscopy (FTIR) analyses were also carried out to track the change in the chemical structure corresponding to the evolution in the viscoelastic response. First, results obtained show that due to the crosslink increase, the storage modulus increases with the number of cycles. It is also observed that temperature amplifies this phenomenon. Second, the cyclic mechanical loading is found to significantly amplify the effect of temperature.  相似文献   

3.
Effects of precipitated silica (PSi) and silica from fly ash (FA) particles (FASi) on the cure and mechanical properties before and after thermal and oil aging of natural rubber (NR) and acrylonitrile–butadiene rubber (NBR) blends with and without chloroprene rubber (CR) or epoxidized NR (ENR) as a compatibilizer have been reported in this paper. The experimental results suggested that the scorch and cure times decreased with the addition of silica and the compound viscosity increased on increasing the silica content. The mechanical properties for PSi filled NR/NBR vulcanizates were greater than those for FASi filled NR/NBR vulcanizates in all cases. The PSi could be used for reinforcing the NR/NBR vulcanizates while the silica from FA was regarded as a semi‐reinforcing and/or extending filler. The incorporation of CR or ENR enhanced the mechanical properties of the NR/NBR vulcanizates, the ENR being more effective and compatible with the blend. The mechanical properties of the NR/NBR vulcanizates were improved by post‐curing effect from thermal aging but deteriorated by the oil aging. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Reused tyres powder was used as reinforcement in HDPE-reused tyre composites. In order to improve the compatibility between both components, several pre-treatments performed over the rubber tyres were applied: sulphuric acid etching, use of a silane coupling agent and chlorination with trichloroisocyanuric acid (TCI). Mechanical properties of the resulting materials (e.g. tensile strength, Young’s Modulus, toughness and elongation at break) were studied and compared. Chemical modifications on the surface of reused tyres were monitored by FTIR and physical modifications and behaviour to fracture were followed by means of SEM. The influence of rubber pre-treatment was assessed by comparing the results of treated and untreated composites with those for neat HDPE. Reused tyre rubber, added to the HDPE in small quantities, acts as a filler, improving the stiffness and providing a more brittle behaviour. Pre-treatment with TCI gave poor results in terms of mechanical properties obtaining lower values than neat HDPE in some cases and always worst properties than sulphuric or silane coupling agent. Treatments with H2SO4 and silane coupling agent improve the ability of rubber to interact with the HDPE, increasing the material’s stiffness and its tensile strength. Sulphuric acid modificates chemical and physically the particles’ surface improving mainly mechanical adhesion, whereas silane acts as a compatibilizer developing chemical matrix-reinforcement interactions.  相似文献   

5.
Nitrile-butadiene rubber (NBR) was exposed to an accelerated thermal aging environment produced by an air-circulating oven for different time periods. NBR aging was evaluated by morphology, crosslink density, mechanical properties, chemical changes and thermal stability. The results showed that the surface damage of NBR turned severe and inhomogeneous, and the aging degree was most serious on the edge region of voids. Crosslinking reactions mainly occurred in the aging process. The tensile strength increased with increase in crosslink density up to a maximum value and thereafter decreased with further increase in crosslink density. X-ray Photoelectron Spectroscopy (XPS) and Pyrolysis Gas Chromatography-Mass Spectrometry (Py-GC/MS) analysis demonstrated that hydroxyl groups were formed and the additives migrated from inner to surface of NBR samples. In addition, the thermogravimetric analysis (TGA) indicated that the thermal stability of NBR did not significantly change in the accelerated thermal aging environment.  相似文献   

6.
7.
Rigid polyurethane foams with up to 50 wt% of microcapsules from LDPE-EVA containing Rubitherm®RT27 were synthesized. The influence of microcapsules on the foams density, microstructure and mechanical resistance was studied. Cell size and strut and wall thicknesses were analyzed by SEM. The relationships between densities and foam microstructures with their Young's moduli and collapse stress were found by the Gibson and Ashby formulations and the Kerner equation for mechanical properties of composites. It was found a cell structure change from polyhedral closed-cells to spherical or amorphous open-cells. A good agreement between the experimental and theoretical data was observed but requiring a cell form factor. Thus, Fitting parameters confirmed the high trend of these microcapsules to be incorporated into the foam cell walls and the form factors depicted the abrupt change of cell morphology. Thus, these equations are suitable for predicting the mechanical properties of foams containing fillers of low mechanical resistance.  相似文献   

8.
通过向聚氨酯发泡体系中添加空心玻璃微珠,制备出空心玻璃微珠聚氨酯三相泡沫.研究了空心玻璃微珠添加量、聚磷酸铵(APP)用量、膨胀阻燃体系(IFR)浓度等因素对聚氨酯泡沫燃烧和力学性能的影响.结果表明,单独添加空心玻璃微珠对聚氨酯泡沫的氧指数和水平燃烧速度影响不大.添加APP或IFR后,空心玻璃微珠聚氨酯三相泡沫的阻燃效...  相似文献   

9.
Morphology and properties of waterborne polyurethane/clay nanocomposites   总被引:4,自引:0,他引:4  
Aqueous emulsion of polyurethane ionomers, based on poly(tetramethylene glycol) or poly(butylene adipate) as soft segment, isophorone diisocyanate as diisocyanate, 1,4-butandiol as chain extender, dimethyl propionic acid as potential ionic center, triethylene tetramine as crosslinker, and triethyl amine as neutralizer, were reinforced with organoclay to give nanocomposites. The particle size of emulsion was measured and the morphology of these nanocomposites was observed by transmission electron microscope, where the effectively intercalated or exfoliated organoclay was observed. The reinforcing effects of organoclay in mechanical properties of these nanocomposites were examined by dynamic mechanical and tensile tests, and the Shore A hardness was measured. Enhanced thermal and water resistance and marginal reduction in transparency of these nanocomposites were observed compared with pristine polymer.  相似文献   

10.
Hydrogen bond effects in azido polyurethane elastomers (APUE) have been studied by dynamic mechanical analysis (DMA) and the results show that the hydrogen bond effect has stronger temperature dependence. The activation energy of hydrogen bond dissociation (Ea) and the hydrogen bond density (vs/V) have been evaluated from the elastic modulus–temperature relationship. The calculated Ea in this work is much higher than the reported values of normal polyurethane elastomer (PUE). The values of Ea are 81.3, 68.1, 53.3, and 42.3 kJ/mol at 150, 110, 50, and 20 Hz, respectively, for PUE‐1 (CPPB/HDI trimer elastomer); 94.6, 75.8, 48.4, and 36.9 kJ/mol at 150, 110, 50, and 20 Hz, respectively, for PUE‐2 (APPB/HDI trimer elastomer); 82.1, 74.4, 59.8, and 46.5 kJ/mol at 150, 110, 50, and 20 Hz, respectively, for PUE‐3 (APPB/HDI trimer/EG elastomer); 145, 124, 88.0, and 75.5 kJ/mol at 150, 110, 50, and 20 Hz, respectively, for PUE‐4 (APPB/HDI trimer/BD elastomer); and 72.2, 64.3, 49.8, and 39.9 KJ/mol at 150, 110, 50, and 20 Hz, respectively, for PUE‐5 (APPB/HDI trimer/HD elastomer). The DMA estimations are semiquantitative for it ignores other physical crosslinking effects and the results give relative order of vs/V and Ea. The values of vs/V of crosslinked APUE (PUE‐3, PUE‐4, and PUE‐5) are much higher than PUE‐2. The test frequency could affect the values of vs/V and higher frequency would minify the difference of the values of vs/V for two given temperatures. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2841–2851, 2006  相似文献   

11.
The effects of high-energy radiation on hydrogenated nitrile butadiene rubber (HNBR) copolymer structure and properties were studied. Characterization by FTIR spectroscopy, swelling and mechanical measurements of irradiated and un-irradiated sample permit us to correlate the change in structure with properties. The modifications obtained are dependent on the radiation dose of the incident electron beam. FTIR spectroscopy in absorption mode shows that irradiation of HNBR first induces trans-vinylene bond formation and secondly small amounts of carbonyl (CO) groups. Moreover, more significant changes were observed with swelling method and mechanical behaviour showing the effect of crosslinking on the elastomer.  相似文献   

12.
A dissolution-based recycling technique for acrylonitrile-butadiene-styrene copolymer (ABS) is proposed, and the effects of repeated recycling cycles are studied measuring changes in chemical structure, melt viscosity, and tensile and impact properties. Acetone as solvent, 0.25 g/ml concentration, room temperature and 40 min for dissolution have been found to be the most reliable recycling parameters. FTIR, DSC and MFI results have shown that the dissolution-based recycling itself does not degrade the ABS. However, TGA analysis suggests that during the dissolution some stabilizers are probably eliminated, and consequently degradation takes place in the following injection moulding step. Darkening of recycled ABS is attributed to the butadiene degradation, pointed out by FTIR results. Otherwise, the chemical structure of the SAN matrix has not been modified, but its molecular weight has been reduced. The modulus of elasticity is not affected even after four recycling cycles. However, yield stress and impact strength decrease after the first recycling cycle, and remain constant in the following steps.  相似文献   

13.
Polyurethane (PU) and polyurethane acrylate (PUA) networks based on hydroxyl-terminated polycaprolactone (PCL), 1,3-bis-2,2′(2-isocyanatopropyl)benzene (m-TMXDI), trimethylolpropane (TMP) for PU or hydroxyethyl methacrylate (HEMA) for PUA were synthesized. Glass transition temperature, Tg, dynamic mechanical relaxation, α, and equilibrium tensile modulus, E′, were measured to compare the two kinds of networks. To explain thermal and mechanical properties of networks, the concept of hard clusters has been introduced. PU networks exhibit a single-phase structure with modulus and Tg dependent on the concentration of elastically active network chains (EANC) per unit volume calculated by considering hard crosslink clusters. The rigidity of the clusters comes from small diisocyanate and trimethylolpropane units connected by urethane bonds. They are embedded in a continuous soft phase of macrodiol urethane. Physical equivalence between several kinds of network models has been demonstrated for full conversion of isocyanate-alcohol reaction. PUA networks exhibit thermodynamically one-phase structures that become a two-phase structure for high molar mass of macrodiol when the molar fraction of isocyanate groups increases. For those networks, the calculated modulus considering clusters based on polyacrylate chains seems to be a good way to approach the experimental value of the equilibrium modulus. For the same molar ratio of OH to NCO groups the range of dynamic moduli is larger for PUA than for PU. This difference can be explained by a different concentration of crosslinks in the networks. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
张胜 《高分子科学》2015,33(4):554-563
Nano-Si O2 and/or Mo O3 were introduced to ethylene-vinyl acetate/nitrile butadiene rubber(EVA/NBR) blends containing magnesium hydroxide(MH) and red phosphorus(RP) to further improve the mechanical properties, oil resistance, smoke suppression and flame retardancy. The results indicated that the tensile strength and oil resistance were significantly improved by incorporating nano-Si O2. Smoke suppression tests for EVA/NBR blend samples showed that both nano-Si O2 and Mo O3 can significantly reduce smoke release amount. The flammability characterization indicated that the blended sample with an LOI value of 33.0 could achieve V-0 level in the UL-94 test. Cone calorimetry test data showed the peak heat release rate was 67% lower than that for pure EVA/NBR. Thermal analysis showed that the presence of both nano-Si O2 and Mo O3 was beneficial to promoting char formation of the EVA/NBR blends. Char residual analysis suggested that Mo O3 aggregated in solid phase during combustion.  相似文献   

15.
The recent rapid development of technology has demanded smart materials with tailoring a bridge between macro properties and sophisticated micro and nano characteristic. Principally, shape memory polymers (SMPs) will come to play as an indispensable part of numerous aspects of human activity. Nevertheless, the low mechanical strength and thermal conductivity of SMPs have primarily restricted their applications. To impart shape memory behaviour and mechanical properties, we fabricated a series of composites by a feasible and commercial melt-mixing method. Thus, a series of fast heat-actuated shape memory polymer composite with greatly enhanced stretch-ability, mechanical stiffness, dynamic-modulus, rheological qualities, recovery and fixity ratio was prepared by incorporating multi-walled carbon nanotubes (CNT), montmorillonite (MMT) and CNT:MMT hybrid into thermoplastic polyurethane (TPU). Noteworthy, CNT-based specimens exhibited superior mechanical properties than those of MMT-based samples, and interestingly, the hybrid composites featured a synergistic effect due to the sacrificial role of MMT nanoplatelets for adjusting the dispersion of CNT nanotubes. Microstructural observations indicated that the crystallization percentages of the composites were generally higher than that of pristine TPU; therefore, the shape-memory performance of the specimens improved notably in the case of the hybrid composites owing to creating more interfacial zone with CNT:MMT nanoparticles as compared to other simple composites. This study proved that the simultaneous incorporation of CNT and MMT nanoparticles not only granted outstanding mechanical properties, but also improved the overall shape memory behaviour of the composites by systematical localization of the nanoparticles without any functionalization or modification.  相似文献   

16.
A series of fluorinated thermoplastic polyurethane elastomers (FTPU) based on self-synthesized fluorinate polyether diol (PFGE) were prepared by two-step polymerization. For the purpose of improving the molecular weight and mechanical property of FTPU, polybutylene adipate (PBA) was used to be compounded with PFGE as the soft-segment of FTPU. Effects of the mass ratio of PFGE/PBA and the mass fraction of hard-segment on the mechanical property of FTPU were investigated. The structure and morphology of FTPU were characterized by FTIR, GPC, DMA, surface tension and AFM analysis.  相似文献   

17.
Segmented poly(ester-urethane)elastomers (PU) based on poly(ethylene diethylene adipate) diols as a soft segment and aromatic diisocyanates in the hard segment were synthesized by a conventional method. The precipitated and compact polyurethane films have been degraded after a limited exposure to natural weathering. The effects on mechanical properties of precipitated and compact polyurethane films were found to be a measure of the degradation due to weathering. The present study attempts to correlate the physical-mechanical properties of the precipitated polyurethane and compact films with time of weathering. In all cases a certain amount of oxidative change had been initiated. This was probably associated with enzyme adsorption on surfaces. We compared natural weathering of PU films carried out in earth, seawater and exposure to sunlight with untreated samples. In common with other weathering tests, the effect was to decrease the ultimate tensile strain, except seawater. It was found that enzymatic degradation in the earth occurred only after, the ageing process was continuous and practically linear with a relatively short initial period of increase in degradation rate.  相似文献   

18.
In this paper, the yield strength and elastic modulus of Poly (lactide-co-glycolide) (PLGA) and PLGA/nano-biphasic calcium phosphate (nBCP) composite scaffolds, before and during in-vitro degradation, have been evaluated. Composite scaffolds were made by using PLGA matrix and 10-50 wt.% nBCP powder as the reinforcement material. All scaffolds, with more than 89% porosity, were fabricated by thermally-induced phase separation (TIPS). During in-vitro degradation (0-8 weeks), the PLGA/nBCP scaffolds showed both more weight loss and better mechanical properties as compared to neat PLGA scaffolds. The PLGA/nBCP scaffolds with 30 wt.% nBCP illustrated the highest value of yield strength among the composite scaffolds, before and after degradation, until 6 weeks. After 8 weeks, the yield strength values were very poor and close to each other. The values of elastic modulus for all samples were less than the half of their initial values after 6 weeks. However, after 8 weeks, the elastic moduli of all samples reduced to negligible values.  相似文献   

19.
蒲俊文 《高分子科学》2014,32(10):1363-1372
in order to improve the optical and mechanical performances of waterborne polyurethane (WPU), nanocrystalline cellulose (NCC)/WPU composites were synthesized in this study. NCC (prepared by acid hydrolysis of cotton fiber) was modified by (3-aminopropyl)triethoxysilane (APTES) to enhance its compatibility with WPU, and the surface-modified NCC was characterized by grafting ratio, crystallinity and contact angle (CA). NCC/WPU composites were examined by scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and thermogravimetric analysis (TG). The anti-yellowing property, specular gloss, pencil hardness, and abrasion resistance of NCC/WPU composites were investigated by the methods of Chinese National Standards GB/T 23999-2009, GB/T 9754-2007, GB/T 6739-2006 and GB/T 1768-2006, respectively. The results showed that the grafting ratio of NCC modified by 6% APTES was 36.01% and the crystallinity of modified NCC was decreased with the enhancement of APTES. CA of the modified NCC was decreased by 28.8% and the nanoparticles were homogeneously dispersed in the WPU matrix. The XRD patterns of the NCC/WPU composites were relatively steady, while the thermal stability of the composites was enhanced by 6.7% with 1.0 wt% modified NCC. Modified NCC affected the specular gloss of NCC/WPU composites more obviously than the anti-yellowing property. The pencil hardness of NCC/WPU composites was increased from 2H to 4H by addition of NCC and the abrasion resistance of the composites was enhanced significantly. In general, NCC/WPU composites showed significant improvements in the optical and mechanical performances.  相似文献   

20.
Aliphatic polyester-based polyurethane (PU) elastomers with hyperbranched polyester segments were synthesized from polyester diol, hydroxyl-terminated hyperbranched polyester (HB-20), isophorone diisocyanate (PDI) and 1,4-butanediol. The crosslinking density of the PU elastomer was calculated by using Flory-Rehner equation. The degree of hydrogen bonding, the microstructure and the morphologies of these PU materials were characterized by means of FT-IR, WAXD and DSC, respectively. The experimental results showed that the PU elastomers containing small amount of HB-20 exhibited the enhanced hydrogen bonding and mechanical properties. As compared with the comparable PU specimen, the tensile strength of the polyester-based aliphatic PU containing 6 wt% HB-20 increased by 71.2 times, up to 36.1 MPa, and the elongation at break was still as high as 333.1%, resulting from the dual effects of the hydrogen bonding and the crosslinking density in the PU system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号