首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xie J 《Inorganic chemistry》2008,47(13):5564-5566
Three neutral nanoclusters Zn 8S(SC 6H 5) 14L 2 [L = 3-aminopyridine ( 1), 4-(dimethylamino)pyridine ( 2), 4-methylpyridine ( 3)] featuring a wurtzite-like core have been assembled by a controlled one-step hydrothermal reaction. Their detailed photoluminescence properties depend upon the ligand substituents. Cluster 1 exhibited a narrow, symmetric emission spectrum and has a potential application as a fluorescence quantum dot.  相似文献   

2.
Quantum dots (QDs) have been increasingly used in biolabeling recently as their advantages over molecular fluorophores have become clear. For bioapplications QDs must be water-soluble and buffer stable, making their synthesis challenging and time-consuming. A simple aqueous synthesis of silica-capped, highly fluorescent CdTe quantum dots has been developed. CdTe QDs are advantageous as the emission can be tuned to the near-infrared where tissue absorption is at a minimum, while the silica shell can prevent the leakage of toxic Cd(2+) and provide a surface for easy conjugation to biomolecules such as proteins. The presence of a silica shell of 2-5 nm in thickness has been confirmed by transmission electron microscopy and atomic force microscopy measurements. Photoluminescence studies show that the silica shell results in greatly increased photostability in Tris-borate-ethylenediaminetetraacetate and phosphate-buffered saline buffers. To further improve their biocompatibility, the silica-capped QDs have been functionalized with poly(ethylene glycol) and thiol-terminated biolinkers. Through the use of these linkers, antibody proteins were successfully conjugated as confirmed by agarose gel electrophoresis. Streptavidin-maleimide and biotinylated polystyrene microbeads confirmed the bioactivity and conjugation specificity of the thiolated QDs. These functionalized, silica-capped QDs are ideal labels, easily synthesized, robust, safe, and readily conjugated to biomolecules while maintaining bioactivity. They are potentially useful for a number of applications in biolabeling and imaging.  相似文献   

3.
Cadmium sulfide (CdS) quantum dots (QDs) grafted with thermoresponsive poly( N-isopropylacrylamide) chains have been prepared. As the temperature increases, PNIPAM chains shrink and aggregate so that the QDs exhibit enhanced fluorescence emission. At a temperature around the lower critical solution temperature (LCST) of PNIPAM, the fluorescence exhibits a maximum intensity. Our experiments reveal that the fluorescence emission is determined by the interactions between QDs as a function of the interdot distance. The optical interdot distance for the maximum luminescence intensity is approximately 10 nm. The chain length of PNIPAM also has an effect on the luminescence. Short PNIPAM chains are difficult to associate, leading to a large interdot distance, so that the luminescence intensity changes slightly with temperature.  相似文献   

4.
Quantum dots are a group of inorganic nanomaterials exhibiting exceptional optical and electronic properties which impart distinct advantages over traditional fluorescent organic dyes in terms of tunable broad excitation and narrow emission spectra, signal brightness, high quantum yield and photo-stability. Aqueous solubility and surface functionalization are the most common problems for QDs employed in biological research. This review addresses the recent research progress made to improve aqueous solubility, functionalization of biomolecules to QD surface and the poorly understood chemistry involved in the steps of bio-functionalization of such nanoparticles.  相似文献   

5.
Surface functionalization is a critical step for Si nanocrystals being used as biological probes and sensors. Using density-functional tight-binding calculations, we systematically investigate the optical properties of silicon quantum dots (SiQDs) with various termination groups, including H, CH(3), NH(2), SH, and OH. Our calculations reveal that capping SiQDs with alkyl group (-Si-C-) induces minimal changes in the optical spectra, while covering the surface with NH(2), SH, and OH results in evident changes compared to hydrogenated SiQDs. The structural deformations and electronic property changes due to surface passivation were shown to be responsible for the above-described features. Interestingly, we find that the optical properties of SiQDs can be controlled by varying the S coverage on the surface. This tuning effect may have important implications in device fabrications.  相似文献   

6.
In this study, biotin-conjugated glutathione was synthesized using peptide bonding of the biotin carboxy group and amino group of the γ-glutamic acid to prepare an alternative coating for CdTe quantum dots (QDs). This type of coating combines the functionality of the biotin with the fluorescent properties of the QDs to create a specific, high-affinity fluorescent probe able to react with avidin, streptavidin and/or neutravidin. Biotin-functionalized glutathione-coated CdTe QDs were prepared by a simple one-step method using Na? TeO? and CdCl?. Obtained QDs were separated from the excess of the biotin-conjugated glutathione by CE employing 300?mM borate buffer with pH 7.8 as a background electrolyte. The detection of sample components was performed by the photometric detection at 214?nm and LIF employing Ar? ion laser (488?nm).  相似文献   

7.
Coordination polymers PZn quantum dots with a uniform diameter of 3 ± 0.5 nm were successfully prepared. The PZn QDs exhibit excellent water dispersibility, high photoluminescence, outstanding photostability and remarkable biocompatibility. The results of cellular experiments show that the PZn QDs are highly suitable for long-term cell imaging.  相似文献   

8.
The photoluminescence of water-soluble CdSe/ZnS core/shell quantum dots is found to be temperature-dependent: as temperature arising from 280 K to 351 K, the photoluminescence declines with emission peak shifting towards the red at a rate of ∼0.11 nm K−1. And the studies show that the photoluminescence of water-soluble CdSe/ZnS quantum dots with core capped by a thinner ZnS shell is more sensitive to temperature than that of ones with core capped by a thicker one. That is, with 50% decrement of the quantum yield the temperature of the former need to arise from 280 K to 295 K, while the latter requires much higher temperature (315.6 K), which means that the integrality of shell coverage is a very important factor on temperature-sensitivity to for the photoluminescence of water-soluble CdSe/ZnS quantum dots. Moreover, it is found that the water-soluble CdSe quantum dots with different core sizes, whose cores are capped by thicker ZnS shells, possess almost the same sensitivity to the temperature. All of the studies about photoluminescence temperature-dependence of water-soluble CdSe/ZnS core/shell quantum dots show an indispensable proof for their applications in life science.  相似文献   

9.
Using ab initio calculations, we have studied the influence of optical activation on functionalization reactions of silicon quantum dots with unsaturated hydrocarbons. We find that the energy barrier for the replacement of silicon-hydrogen with silicon-carbon bonds is dramatically reduced if the silicon dot is optically excited. These results provide an explanation for recent experiments on optically excited porous silicon. In addition, our calculations point at the existence of an intermediate spin-polarized state formed by the dot and an alkene or alkyne, upon relaxation after absorbing a photon. This state could be detected experimentally, by, for example, electron spin resonance measurements. Based on the results of our calculations as a function of the dot size, varied from 0.8 to 1.5 nm, we propose that light activated reactions could be used to functionalize and size select silicon quantum dots at the same time.  相似文献   

10.
A series of core/shell CdSe/Zn1-xMnxS nanoparticles were synthesized for use in dual-mode optical and magnetic resonance (MR) imaging techniques. Mn2+ content was in the range of 0.6-6.2% and varies with the thickness of the shell or amount of Mn2+ introduced to the reaction. These materials showed high quantum yield (QY), reaching 60% in organic solvent. Water-soluble nanoparticles were obtained by capping the core/shell particles with amphiphilic polymer, and the QY values in water reached 21%. These materials also demonstrated high relaxivity with r1 values in the range of 11-18 mM-1 s-1 (at room temperature, 7 T). Both optical and MR imaging were performed on nanoparticles in aqueous solution and applied to cells in culture. The results showed that the QY and manganese concentration in the particles was sufficient to produce contrast for both modalities at relatively low concentrations of nanoparticles.  相似文献   

11.
Highly luminescent water-soluble CdTe quantum dots(QDs) have been synthesized with an electrogenerated precursor.The obtained CdTe QDs can possess good crystallizability,high quantum yield(QY) and favorable stability.Furthermore,a detection system is designed firstly for the investigation of the temperature-dependent PL of the QDs.  相似文献   

12.
J Wang  X Huang  F Zan  CG Guo  C Cao  J Ren 《Electrophoresis》2012,33(13):1987-1995
In this paper, we systematically investigated the conjugation of quantum dots (QDs) with certain biomolecules using capillary electrophoresis (CE) and fluorescence correlation spectroscopy (FCS) methods. Commercial QDs and aqueous-synthesized QDs in our lab were used as labeling probes, certain bio-macromolecules, such as proteins, antibodies, and enzymes, were used as mode samples, and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysulfo-succinimide (Sulfo-NHS) were used as linking reagents. We studied the effects of certain factors such as the isoelectric points (pIs) of bio-macromolecules and buffer pH on the bioconjugation of QDs, and found that the pIs of bio-macromolecules played an important role in the conjugation reaction. By the optimization of the buffer pH some proteins with different pIs were efficiently conjugated with QDs using EDC and Sulfo-NHS as linking agents. Furthermore, we on-line investigated the kinetic process of QDs-bioconjugation by FCS and found that the conjugation reaction of QDs with protein was rapid and the reaction process almost completed within 10 min. We also observed that QDs conjugated with proteins were stable for at least 5 days in phosphate buffer. Our work described here will be very helpful for the improvement of the QDs conjugation efficiency in bioapplications.  相似文献   

13.
Herein we report the development of a new method for in situ reversible tuning of photoluminescence properties of quantum dots (Qdots) by partial oxidation of population of the emitting species and subsequent chemical reduction of the oxidized form. The concept has been demonstrated using Mn(2+)-doped ZnS Qdots stabilized by acetyl acetonate. Treatment of an aqueous solution of the Qdots (with Mn(OAc)(2) being the source of Mn used for the synthesis of the Qdots) by potassium peroxodisulfate (KPS) led to reduction of intensity of emission due to Mn(2+) ((4)T(1)-(6)A(1)). Subsequent treatment of the solution containing KPS-treated Qdots with NaBH(4) led to regaining of intensity, thus providing reversibility to the tuning, which was possible for more than one cycle. Electron spin resonance (ESR) spectroscopic investigations revealed reduction of the population of Mn(2+) upon treatment with KPS, whereas it went back up upon further treatment with NaBH(4). Interestingly, a mixed population of oxidation states of Mn was indicated to be present in the Qdots prepared using KMnO(4) as the source of Mn. The fluorescence intensity of the Qdots so prepared increased upon treatment with NaBH(4) following synthesis, which was not possible when the source of Mn was Mn(OAc)(2). Transmission electron microscopic and X-ray diffraction studies indicated that oxidation and reduction did not change the sizes of Qdots significantly.  相似文献   

14.
《中国化学快报》2020,31(6):1616-1619
The synthesized near infrared molybdenum oxide quantum dots perform excellent red fluorescence imaging performance and photothermal performance,which have 600,650 and 700 nm three unique peaks excited at 540 nm,with a high quantum yield around 20%.Meanwhile,with 808 nm NIR laser excitation,10 mg/mL modified Molybdenum oxide quantum dots can increase temperature up to 72.2℃within 150 s and 77.7℃ within 270 s,respectively.  相似文献   

15.
Self-selected recovery of the photoluminescence (PL) of amphiphilic polymer encapsulated PbS quantum dots (QDs) was observed in water for the first time and possible mechanisms were proposed based on investigations by means of transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction and fluorescence spectroscopy. Water-soluble PbS QDs were synthesized by transferring monodispersed QDs capped with hydrophobic ligands of oleylamine from an organic solvent into water via amphiphilic polymers poly(maleic anhydride-alt-1-octadecene-co-poly(ethylene glycol)). The water transfer process leads to a double size distribution (5.6 ± 0.9 nm and 2.7 ± 0.4 nm), attributed to ligand etching together with Ostwald ripening, as well as the fast decay of PL. The automatic recovery of the PL in PbS QDs stored in water in the dark for 3 months was only observed for the subset of smaller QDs and is largely due to the removal of surface defects with aging, as evidenced by the decreased percentage of unpassivated surface atoms from XPS studies. In contrast, the PL of the subset of larger QDs in the same sample does not self-recover in water and can only be slightly recovered by transferring them into environments with less external quenches. The results strongly suggest that it is the surface defect in the larger QDs themselves, introduced during Ostwald ripening, that is primarily responsible for their non-emitting status or rather low PL intensity under different conditions. The increase of unpassivated Pb atoms in larger PbS QDs after the 3 month aging has been confirmed by XPS, which explains their non-recovery behavior in water. The PL-recovered QD sample in water is very stable and shows comparable photostability to the initial QDs dispersed in an organic phase.  相似文献   

16.
A new approach to the one-step synthesis of cadmium selenide (CdSe) quantum dots is reported using the air stable complex cadmium imino-bis(diisopropylphosphine selenide); the ligand is readily prepared from elemental selenium and the precursor, quantum dots of comparable quality to those prepared by conventional methods are obtained.  相似文献   

17.
The “insitu” reaction of triphenylphosphine, fluorotrichloromethane, zinc dust, and an aldehyde or ketone in dimethylformamide at 60°C provides a facile one-step synthesis of chlorofluoromethylene olefins. A study of representative examples of carbonyl compounds demonstrates that this approach gives yields of olefinic products comparable to other more elaborate or expensive synthetic routes. It should prove to be synthetically useful for the preparation of chlorofluoromethylene olefins from aldehydes and reactive ketones.  相似文献   

18.
19.
Development of quantum dot (QD) based device components requires controlled integration of QDs into different photonic and electronic materials. In this regard, introduction of methods for regular arrangement of QDs and investigation of properties of QD-based assemblies are important. In the current work we report (1) controlled conjugation of CdSe-ZnS QDs to sidewall-functionalized single-walled carbon nanotube (SWCNT) templates (2) and the effect of conjugation of QDs to SWCNT on the photoluminescence (PL) properties of QDs. We identified that PL intensity and lifetime of QDs are considerably reduced after conjugation to SWCNT. The origin of the quenching of the PL intensity and lifetime was discussed in terms of F?rster resonance energy transfer (FRET). FRET involves nonradiative transfer of energy from a photoexcited QD (energy donor) to a nearby SWCNT (energy acceptor) in the ground state. This was examined by varying the density of QDs on SWCNT and conjugating smaller and bigger QDs to the same SWCNT. We estimated the FRET efficiency in QD-SWCNT conjugates from the quenching of the PL intensity and lifetime and identified that FRET is independent of the density and type of QDs on SWCNT but inherent to QD-SWCNT conjugates.  相似文献   

20.
Cell-derived microvesicles(MVs) are secreted from almost all kinds of mammalian cells into the extracellular space, and play crucial roles in intercellular communication and transporting biomolecules between cells. However, there is a great challenge for visualizing and monitoring of MVs' bio-behaviors due to the limitations of existing labeling methods. Herein, we report the first paradigm of designer cell-self-implemented labeling of MVs secreted from living mammalian MCF-7 cells in situ using the intracellular-synthesized fluorescent quantum dots(QDs) during the formation of MVs. By elaborately coupling intracellular biochemical reactions and metabolism pathways, the MCF-7 cells can be illuminated brightly by intracellular-biosynthesized fluorescent CdSe QDs. Simultaneously, intracellular-synthesized QDs can be in situ encapsulated by the secreted MVs budding from the plasma membrane of the fluorescing cells to label the MVs with an efficiency of up to 89.9%. The whole labeling process skillfully combines designer precise cell-tuned intricate synthesis of CdSe QDs with mild in-situ labeling via cell-selfimplementation just after feeding the cell with suitable chemicals, which is structure-or function-nondestructive and much more straightforward and milder than those by chemical conjugation or indirect encapsulation with conventional fluorogenic labels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号