首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 212 毫秒
1.
用精密自动绝热量热计测定了重铬酸钾晶体在100~390 K温区内的摩尔热容.实验结果表明在研究温度区间内重铬酸钾无相变和其它热反常现象发生,但其热容在不同的温度范围表现出不同的变化趋势.在100 K≤ T ≤ 275 K和350 K≤ T ≤390 K区间内,其热容随温度的升高明显增大,在275 K≤ T ≤350 K区间,其热容约为定值.将重铬酸钾摩尔热容实验值Cp,m(J•K-1•mol-1)拟合成温度T的多项式方程,在100 K≤ T ≤275 K,为Cp,m=0.0050T2-1.0320T+125.22; 275 K≤ T ≤ 350 K,为Cp,m=209.37; 350 K≤ T ≤390 K,为Cp,m= 0.0266T2-18.823T+3542.3.根据热力学函数关系式,从热容值计算出了298.15 K~ 400 K温区范围内每隔5 K的热力学函数值.  相似文献   

2.
利用精密自动绝热热量计直接测定了配合物Zn(Met)SO4·H2O(s)在78~370K温区的摩尔热容.通过热容曲线的解析得到该配合物的起始脱水温度为T0=329.50K.将该温区的摩尔热容实验值用最小二乘法拟合得到摩尔热容(Cp,m)对温度(T)的多项式方程,并且在此基础上计算出了它的舒平热容值和各种热力学函数值.依据Hess定律,通过设计热化学循环,选择体积为100cm3、浓度为2mol·L-1的盐酸作为量热溶剂,利用等温环境溶解-反应热量计,测定和推算出该配合物的标准摩尔生成焓为?fHms=-(2069.30±0.74)kJ·mol-1.  相似文献   

3.
选择邻苯二甲酸和氢氧化钠作为反应物,利用液相合成方法合成了水合邻苯二甲酸钠.利用X射线粉末衍射、化学与元素分析等方法表征了它的组成和结构.利用精密自动绝热热量计测定了该化合物在78~366K温区的摩尔热容.将该温区的摩尔热容实验值用最小二乘法拟合得到摩尔热容(Cp,m)对温度(T)的多项式方程,用此方程进行数值积分得到此温度区间内每隔5K的舒平热容值和相对于298.15K时的热力学函数值.另外,依据Hess定律,通过设计合理的热化学循环,利用等温环境溶解-反应热量计分别测量了固相量热反应的反应物和产物在所选溶剂中的溶解焓,从而确定反应的反应焓为:ΔrHm=29.073±1.05kJ·mol-1.最后,利用反应的反应焓和其它反应物和产物已知的热力学数据计算出水合邻苯二甲酸钠的标准摩尔生成焓为:-1493.637±1.11kJ·mol-1.  相似文献   

4.
选择分析纯邻苯二甲酸和浓氨水为反应物,合成了邻苯二甲酸氢铵.利用元素分析、FTIR和X-射线粉末衍射技术表征了它的组成和结构.用精密自动绝热热量计测定了它在78~400 K温区的摩尔热容,将该温区的摩尔热容实验值用最小二乘法拟合,得到摩尔热容(Cp,m)随折合温度(X)变化的多项式方程,利用此方程计算出该温区内每隔5 K的舒平热容值和相对于298.15K的各种热力学函数值.另外,依据Hess定律,通过设计合理的热化学循环,利用等温环境溶解-反应热量计分别测定所设计反应的反应物和产物在所选溶剂中的溶解焓,得到该反应的反应焓为△rHθm=(1.787±0.514)kJ·mol-1.最后,利用此反应焓和反应中其他物质的热力学数据计算出邻苯二甲酸氢铵的标准摩尔生成焓为:△fHθm[NH4(C8H5O4),s]=-(912.953±0.628)kJ·mol-1.  相似文献   

5.
通过精密自动绝热热量计测定了配合物Zn(His)SO4*H2O(s)在78~390K温区的摩尔热容,由热容曲线得到其起始脱水温度328.90K;用最小二乘法拟合得到摩尔热容(Cp,m)对温度(T)的多项式方程,并在此基础上计算了它的各种热力学函数.此外,研究了其在惰性气氛下的热分解过程.  相似文献   

6.
利用精密自动绝热热量计直接测定了配合物Zn(Phe)(NO3)2·H2O(s) (Phe:苯丙氨酸)在78-370 K温区的摩尔热容. 通过热容曲线的解析得到该配合物的起始脱水温度为, T0=(324.27±0.37) K. 将该温区的摩尔热容实验值用最小二乘法拟合得到摩尔热容(Cp, m)对温度(T)的多项式方程, 并且在此基础上计算出了它的舒平热容值和各种热力学函数值. 依据Hess定律, 通过设计热化学循环, 选择体积为100 mL浓度为2 mol·L-1 的盐酸作为量热溶剂, 利用等温环境溶解-反应热量计分别测定混合物{ZnSO4·7H2O(s)+2NaNO3(s)+L-Phe(s)}和{Zn(Phe)(NO3)2·H2O(s)+Na2SO4(s)}的溶解焓为, ⊿dH0m,1 =(69.42±0.05) kJ·mol-1, ⊿dH0 m,2 =(48.14±0.04) kJ·mol-1, 进而计算出该配合物的标准摩尔生成焓为, ⊿fH0m =-(1363.10±3.52) kJ·mol-1. 另外, 利用紫外-可见(UV-Vis)光谱和折光指数(refractiveindex)的测量结果检验了所设计的热化学循环的可靠性.  相似文献   

7.
水合烟酸钡的合成、结构表征和热化学性质   总被引:1,自引:0,他引:1  
选择烟酸和氢氧化钡作为反应物,利用室温固相合成方法,借助于球磨技术,合成了一种新的化合物-水合烟酸钡.利用化学分析、元素分析、FTIR和X射线粉末衍射等方法确定了它的组成和结构为Ba(Nic)2·3H2O(s).利用精密自动绝热热量计直接测定了此化合物在78-400 K温区的摩尔热容.在热容曲线上出现了一个明显的吸热峰,通过对热容曲线的解析,得到了相变过程的峰温、相变焓和相变熵分别为(327.097±1.082)K、(16.793±0.084)kJ·mol-1和(51.340±0.164)J·K-1·mol-1将该温区的摩尔热容实验值用最小二乘法拟合得到摩尔热容(Cp,m)对温度(T)的多项式方程,并且在此基础上计算出了它的舒平热容值和各种热力学函数值.另外,依据Hess定律,通过设计合理的热化学循环,选择体积为100mL、浓度为0.5mol·L-1的盐酸作为量热溶剂,利用等温环境溶解-反应热量计分别测量固相反应的反应物和产物在所选溶剂中的溶解焓,利用溶解焓确定固相反应的反应焓为△rH0m=-(84.12±0.38)kJ·mol-1.最后,利用固相反应的反应焓和其它反应物和产物已知的热力学数据计算出水合烟酸钡的标准摩尔生成焓为△rH0m[Ba(Nic)2·3H2O(s)]=-(2115.13±1.90)kJ·mol-1.  相似文献   

8.
本文用精密自动绝热量热仪测定了2-甲基-2-丁醇在80~305 K温区的热容,从热容曲线(Cp-T) 发现三个固-固相变和一个固-液相变, 其相变温度分别为T = 146.355, 149.929, 214.395, 262.706 K。从实验热容数据用最小二乘法得到以下四个温区的热容拟合方程。在80~140K温区, Cp,m = 39.208 + 8.0724X - 1.9583X2 + 10.06X3 + 1.799X4 - 7.2778X5 + 1.4919X6, 折合温度X = (T –110) / 30; 在 155 ~ 210 K温区, Cp,m = 70.701 + 10.631X + 12.767X2 + 0.3583X3 - 22.272X4 - 0.417X5 + 12.055X6, X = (T –182.5) /27.5; 在220 ~ 250 K温区, Cp,m = 99.176 + 7.7199X - 26.138X2 + 28.949X3 + 0.7599X4 - 25.823X5 + 21.131X6, X = (T – 235)/15; 在 270~305 K温区, Cp,m =121.73 + 16.53 X- 1.0732X2 - 34.937X3 - 19.865X4 + 24.324X5 + 18.544X6, X = (T –287.5)/17.5。从实验热容计算出相变焓分别为0.9392, 1.541, 0.6646, 2.239 kJ×mol-1; 相变熵分别为6.417, 10.28, 3.100, 8.527 J×K-1×mol-1。根据热力学函数关系式计算出80~305 K温区每隔5 K的热力学函数值 [HT –H298.15]和 [ST –S298.15]。  相似文献   

9.
用精密绝热量热法测量了高效热管传热工质在78~320 K温区内的热容.结果表明,在78.41~245.19 K, Cp/(J•K-1•g-1)=0.5369T+0.07279.在274.08~318.51 K, Cp/(J•K-1•g-1)=3.403±0.020.在245~274 K, 高效热管传热工质发生固液相变.其相变温度、相变焓和相变熵分别是271.21 K、353.6 J•g-1,和1.304 J•K-1•g-1.根据热容与温度的定量关系和热力学函数之间的关系,得到了以标准温度298.15 K为基准的高效热管传热工质的热力学函数.  相似文献   

10.
多氯代吩噁嗪热力学性质的密度泛函理论研究   总被引:2,自引:0,他引:2  
在B3LYP/6-31G*水平上对135个多氯代吩噁嗪(PCPXs)系列化合物进行了全优化和振动分析计算, 得到各分子在298.15 K, 1.013×105 Pa标准状态下的热力学性质. 设计等键反应, 计算了PCPXs系列化合物的标准生成热(Δf )和标准生成自由能(Δf ), 研究了这些参数与氯原子的取代位置及取代数目(NPCS)之间的关系, 结果表明: 熵( )、Δf , Δf 与NPCS之间有很强的相关性. 根据异构体标准生成自由能的相对大小, 从理论上求得异构体的相对稳定性. 以Gaussian 03程序的输出文件为基础, 采用统计热力学程序计算了PCPXs化合物在200 K至1800 K的摩尔恒压热容(Cp,m), 并用最小二乘法求得Cp,m与温度之间的相关方程, 发现Cp,m与T, T-1和T-2之间有着很好的相关性.  相似文献   

11.
Low-temperature heat capacities of the solid compound Zn(C4H7O5)2(s) were measured in a temperature range from 78 to 374 K, with an automated adiabatic calorimeter. A solid-to-solid phase transition occurred in the temperature range of 295?322 K. The peak temperature, the enthalpy, and entropy of the phase transition were determined to be (316.269±1.039) K, (11.194±0.335) kJ?mol-1, and (35.391±0.654) J?K-1?mol-1, respectively. The experimental values of the molar heat capacities in the temperature regions o...  相似文献   

12.
Structural and thermodynamic properties of crystalline monoclinic calcium apatites, Ca10(PO4)6(X)2 (X=OH, Cl), were investigated for the first time using a molecular dynamics (MD) technique under a wide range of temperature and pressure conditions. The accuracy of the model at room temperature and atmospheric pressure was checked against crystal structural data, yielding maximum deviations of ca. 2%. The standard molar lattice enthalpy (DeltalatHo298) of the apatites was also calculated and compared with previously published experimental and MD results for the hexagonal polymorphs. High-temperature simulation runs were used to estimate the isobaric thermal expansivity coefficient and study the behavior of the crystal structure under heating. The heat capacity at constant pressure, Cp, in the range 298-1298 K, was estimated from the plot of the molar enthalpy of the crystal as a function of temperature, Hm=(Hm,298-298Cp,m)+Cp,mT, yielding Cp,m=635+/-7 J.mol-1.K-1 and Cp,m=608+/-14 J.mol-1.K-1 for hydroxy- and chlorapatite, respectively. High-pressure MD experiments, in the 0.5-75 kbar range, were performed to estimate the isothermal compressibility. The Parsafar-Mason equation of state was successfully used to fit the high-pressure p-Vm data, with an accuracy better than 0.03%.  相似文献   

13.
选择烟酸和氢氧化钡作为反应物, 利用室温固相合成方法, 借助于球磨技术, 合成了一种新的化合物——水合烟酸钡. 利用化学分析、元素分析、FTIR和X射线粉末衍射等方法确定了它的组成和结构为Ba(Nic)2·3H2O(s). 利用精密自动绝热热量计直接测定了此化合物在78-400 K温区的摩尔热容. 在热容曲线上出现了一个明显的吸热峰, 通过对热容曲线的解析, 得到了相变过程的峰温、相变焓和相变熵分别为(327.097±1.082) K、(16.793±0.084) kJ·mol-1和(51.340±0.164) J·K-1·mol-1. 将该温区的摩尔热容实验值用最小二乘法拟合得到摩尔热容(Cp,m)对温度(T)的多项式方程, 并且在此基础上计算出了它的舒平热容值和各种热力学函数值. 另外, 依据Hess定律, 通过设计合理的热化学循环, 选择体积为100 mL、浓度为0.5 mol·L-1的盐酸作为量热溶剂, 利用等温环境溶解-反应热量计分别测量固相反应的反应物和产物在所选溶剂中的溶解焓, 利用溶解焓确定固相反应的反应焓为⊿rH0m=-(84.12±0.38) kJ·mol-1. 最后, 利用固相反应的反应焓和其它反应物和产物已知的热力学数据计算出水合烟酸钡的标准摩尔生成焓为⊿fH0m[Ba(Nic)2·3H2O(s)]=-(2115.13±1.90) kJ·mol-1.  相似文献   

14.
Low-temperature heat capacities of the solid compound NaCuAsO4 · 1.5H2O(s) were measured using a precision automated adiabatic calorimeter over a temperature range of T = 78 K to T = 390 K. A dehydration process occurred in the temperature range of T = 368-374 K. The peak temperature of the dehydration was observed to be TD = (371.828±0.146) K by means of the heat-capacity measurement. The molar enthalpy and entropy of the dehyperimental values of heat capacities for the solid(Ⅰ) and the solid-liquid mixture(Ⅱ) were respectively fitted to two polynomial equations by the least square method. The smoothed values of the molar heat capacities and the fundamental thermodynamic functions of the sample relative to the standard reference temperature 298.15 K were tabulated at an interval of 5 K.  相似文献   

15.
Structural and thermodynamic properties of crystal hexagonal calcium apatites, Ca10(PO4)6(X)2 (X = OH, F, Cl, Br), were investigated using an all-atom Born-Huggins-Mayer potential by a molecular dynamics technique. The accuracy of the model at room temperature and atmospheric pressure was checked against crystal structural data, with maximum deviations of ca. 4% for the haloapatites and 8% for hydroxyapatite. The standard molar lattice enthalpy, delta(lat)H298(o), of the apatites was calculated and compared with previously published experimental results, the agreement being better than 2%. The molar heat capacity at constant pressure, C(p,m), in the range 298-1298 K, was estimated from the plot of the molar enthalpy of the crystal as a function of temperature, H(m) = (H(m,298) - 298C(p,m)) + C(p,m)T, yielding C(p,m) = 694 +/- 68 J x mol(-1) x K(-1), C(p,m) = 646 +/- 26 J x mol(-1) x K(-1), C(p,m) = 530 +/- 34 J x mol(-1) x K(-1), and C(p,m) = 811 +/- 42 J x mol(-1) x K(-1) for hydroxy-, fluor-, chlor-, and bromapatite, respectively. High-pressure simulation runs, in the range 0.5-75 kbar, were performed in order to estimate the isothermal compressibility coefficient, kappaT, of those compounds. The deformation of the compressed solids is always elastically anisotropic, with BrAp exhibiting a markedly different behavior from those displayed by HOAp and ClAp. High-pressure p-V data were fitted to the Parsafar-Mason equation of state with an accuracy better than 1%.  相似文献   

16.
The heat capacities of liquid ethanol, toluene, and hexamethyldisiloxane, and of 14 binary mixtures of these were measured at atmospheric pressure at a series of temperatures between 298 and 348 K. In addition, the excess enthalpy was measured for each of the 14 mixtures at room temperature and corrected with the aid of the heat capacities to 298.15 K. The results were represented by empirical equations of a polynomial form. From these equations, the excess heat capacity was derived and the excess enthalpy was calculated, and fitted to equations, as a function of composition at temperatures between 298 and 348 K. All the mixtures are non-ideal as evidenced by the substantial excess enthalpy. The excess enthalpy for the mixtures containing ethanol showed a strong positive temperature dependence, while the variation of temperature between 298 and 348 K had little effect on the excess enthalpy of toluene + hexamethyldisiloxane.  相似文献   

17.
在水溶液中合成了5-氨基间苯二甲酸钠(1)和5-羟基间苯二甲酸钠(2)固态样品,元素分析和TG-DTG确定其组成符合C8H5O4NNa2·H2O(1)和C8H4O5Na2·H2O(2).用精密自动绝热热量计测定了它们在78~400K温区的低温热容,将实验值用最小二乘法拟合,得到热容随温度变化的多项式方程,用此方程进行数值积分,得到该温区内每隔5K的舒平热容值和各种热力学函数值.用RD496-2000型微热量计测定了样品在298.15K时的标准摩尔溶解焓分别为ΔsolHmθ(1,s)=-44.552±0.164kJmol-1和θΔsolHm(2,s)=-36.055±0.154kJmol-1,计算了其水合阴离子标准摩尔生成焓分别为θΔfHm(C8H5O4N2-,aq)=-684.56±1.67kJmol-1和ΔfHmθ(C8H4O52-,aq)=-1263.43±2.13kJmol-1.用RBC-II型精密转动弹热量计测定了样品的恒容燃烧热分别为ΔcU(1,s)=-13382.14±5.28Jg-1和ΔcU(2,s)=-10339.15±4.15Jg-1,计算了它们的标准摩尔燃烧焓和标准摩尔生成焓分别为ΔcHmθ(1,s)=-3252.90±1.28kJmol-1和θΔcHm(2,s)=-2522.64±1.01kJmol-1,ΔfHmθ(1,s)=-1406.46±1.66kJmol-1,θΔfHm(2,s)=-1993.79±1.46kJmol-1.  相似文献   

18.
利用精密绝热热量仪测定了化合物配合物Zn(Met)3(NO3)2·H2O (s) (Met=L-α-蛋氨酸)在78-371 K温区的摩尔热容. 通过热容曲线解析, 得到了该配合物的起始脱水温度为TD=325.10 K. 将该温区的摩尔热容实验值用最小二乘法拟合得到了摩尔热容(Cp)对约化温度(T)的多项式方程, 由此计算得到了配合物的舒平热容值和热力学函数值. 基于设计的热化学循环, 选择100 mL of 2 mol·L-1 HCl为量热溶剂, 利用等温环境溶解-反应热量计, 得到了298.15 K配合物的标准摩尔生成焓为ΔfHm0[Zn(Met)3(NO3)2·H2O(s),s]=-(1472.65±0.76) J·mol-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号